Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Khi đó:
\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)
\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)
Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)
Ta có đpcm
sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:
Lấy a/b=c/d=k(k thuộc N*)
=>a=bk ; c=dk
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1)
+ 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2)
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)
Vậy 2a-3c/2b-3d=2a+3c/2b+3d
4)
a) x/5 = y/3
=> 3x = 5y
=> x/y = 5/3
=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6
=> (x;y) thuộc {(10;6)}
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)
\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{2a+3c}{2b+3d}\) (Đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)
\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{3a+3c}{2b+3d}\)( Đpcm )
Vì \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\)
\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)(1)
\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2bk+3dk}{2b+3d}=\frac{k\left(2b+3d\right)}{2b+3d}=k\)(2)
\(\RightarrowĐPCM\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) và \(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)