Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2
Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)
\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)
Vì \(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)
P=-x2+4-5 =-x2-1
ta có -x 2 < hoặc bằng 0 với mọi x
=> P=-x2-1<hoặc bằng -1
=>P luôn luôn âm
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
\(B=-2x^2+4x-5\)
\(=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(=-2\left[\left(x-1\right)^2\right]-3\le3< 0\forall x\)
\(B=-2x^2+4x-5\)
\(B=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(B=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(B=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(B=-2\left(x-1\right)^2-3\)
Mà \(\hept{\begin{cases}-2\left(x-1\right)^2\le0\forall x\\-3< 0\end{cases}\Rightarrow B< 0\forall x}\)