K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

(3xy+2y^2).(3xy-2y^2)

=  (3xy)^2   -  ( 2y^2)^2

=  9x^2y^2  -  4y^4

8 tháng 9 2021

hằng đẳng thức số 3

\(a^2-b^2=\left(a+b\right).\left(a-b\right)\) công thức nha

làm:\(=\left(3xy\right)^2.\left(2y^2\right)^2=9x^2y^2.4y^4=36x^2y^6\)

20 tháng 6 2017

a) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)

\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)

\(=\left(x+2y\right)^2-z^2\)

\(=x^2+4xy+4y^2-z^2\)

d) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=\left(x^2-3\right)\left(4x^2+9\right)\)

\(=4x^4+9x^2-12x^2-27\)

\(=4x^4-3x^2-27\)

f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=\left(2x\right)^3-1^3\)

\(=8x^3-1\)

20 tháng 6 2017

\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)

5 tháng 12 2021

\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)

25 tháng 12 2016

Ta phân tích mẫu:

\(x^3+2x^2y-xy^2-2y^3\)

\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)

\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)

\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)

Thay vào ta có:

\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)

Vậy ta có điều phải chứng minh

25 tháng 12 2016

tks nha <3

19 tháng 6 2017

Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .

Tương tự SAID=SDNC=SBMC=SABK=Shv9  và SIKMN=Shv9 

Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv

Vậy diện tích phần còn lại bằng 49 Shv

Suy ra diện tích hình vuông ABCD bằng 54  diện tích phần còn lại.

k mình nha

26 tháng 9 2015

\(VP=\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)

\(=\frac{x.\left(x+y\right)+2y.\left(x+y\right)}{x.\left(x^2-y^2\right)+2y.\left(x^2-y^2\right)}=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}=VT\left(\text{điều phải chứng minh}\right)\)

26 tháng 6 2021

Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)

\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\left(\frac{1}{3}x\right)\cdot\left(2y\right)+\left(2y\right)^2\right]\)

\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)