Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^x\left(1+3\right)=108\\ 3^x\cdot4=108\\ 3^x=27\\ x=3\)
a, 2 x ( 15 - 3x ) = 12
=> 15 - 3x = 6
=> 3x = 9
=> x = 3
b, 39 - 2 x ( 31 - 3x ) = 15
=> 2 x ( 31 - 3x ) = 24
=> 31 - 3x = 12
=> 3x = 19
=> x = \(\frac{19}{3}\)
nếu mk sửa đề có sai thì nhờ bạn sửa đề lại giúp mk nha
\(a,3x-31=-40\Rightarrow3x=-9\Rightarrow x=-3\)
\(b,-3x+37=\left(-4\right)^2\Rightarrow-3x=-21\Rightarrow x=7\)
\(c,\left|2x+7\right|=5\)
\(\Rightarrow\left\{{}\begin{matrix}2x+7=5\Rightarrow x=-1\\2x+7=-5\Rightarrow x=-6\end{matrix}\right.\)
\(d,-x+21=15+2x\Rightarrow3x=6\Rightarrow x=2\)
a) Ta có: 3x-31=-40
\(\Leftrightarrow3x=-9\)
hay x=-3
Vậy: x=-3
b) Ta có: \(-3x+37=\left(-4\right)^2\)
\(\Leftrightarrow-3x+37=16\)
\(\Leftrightarrow-3x=16-37=-21\)
hay x=7
Vậy: x=7
A)\(\left(3x+7y\right)⋮31\Rightarrow\left(15x+35y\right)⋮31\Rightarrow\left[31\left(x+y\right)+31y-\left(16x+27y\right)\right]⋮31\)
\(x;y\in N\Rightarrow\left\{{}\begin{matrix}31\left(x+y\right)⋮31\\31y⋮31\\\end{matrix}\right.\) \(\Rightarrow\left(16x+27y\right)⋮31\)
B)
\(\left(16x+27y\right)⋮31\Rightarrow\left[31x+62y-\left(15x+35y\right)\right]⋮31\Rightarrow\left[31x+62y-5\left(3x+7y\right)\right]⋮31\)\(x;y\in N\Rightarrow\left\{{}\begin{matrix}31x⋮31\\62y⋮31\\5⋮̸31\end{matrix}\right.;\left(5;31\right)=1}\)\(x;y\in N\Rightarrow\left\{{}\begin{matrix}31\left(x+y\right)⋮31\\31y⋮31\\5⋮̸31\end{matrix}\right.\) ; \(\left(5;31\right)=1\Rightarrow\left(3x+7y\right)⋮31\)
từ (A) và (B) : \(\left(3x+7y\right)⋮31\Leftrightarrow\left(16x+27y\right)⋮31\) =>dpcm \(\Leftrightarrow dccm\)
+)Ta xét 3 TH:
*TH1:x<3
\(\Rightarrow x^2=x.x< 3x\)
\(\Rightarrow x^2< 3x\)
*TH2:x=3
\(\Rightarrow x^2=x.x=3x\)
\(\Rightarrow x^2=3x\)
*TH3:x>3
\(\Rightarrow x^2=x.x>3.x\)
\(\Rightarrow x^2>3x\)
Chúc bn học tốt
TH1: \(x< 0\Leftrightarrow\left\{{}\begin{matrix}x^2>0\\3x< 0\end{matrix}\right.\)\(\Leftrightarrow x^2>3x\)
TH2: \(x=0\Leftrightarrow x^2=3x=0\)
TH3: \(x>0\):
+) \(0< x< 3\Leftrightarrow x^2< 3x\)
+) \(x=3\Leftrightarrow x^2=3x\)
+) \(x\ge4\Leftrightarrow x^2>3x\)
Vậy...
3^x.(3+1)=108
3^x= 108 : 4
3^x= 27
=> 3^x= 3^3
=>x=3
\(3^x+3^x.3^1=108\)
\(3^x.\left(3^1+1\right)=108\)
\(3^x.4=108\)
\(3^x=108:4\)
\(3^x=27=3^3\)
\(\Rightarrow x=3\)