Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
b: \(=27x^3-8-27x^3+6=-2\)
c: \(=\left(3x+5+2-3x\right)^2=7^2=49\)
câu d
\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)
\(\frac{12x^4-6x^3-9x^2}{-3x^2}-\left(2-3x\right)\left(2+3x\right)=-\left(3x+1\right)\)\(Dk:-3x^2\ne0\)\(< =>x\ne0\)
<=> \(-4x^2+2x+3-\left(2-3x\right).\left(2+3x\right)=-\left(3x+1\right)\)
<=> \(-4x^2+2x+3-4-6x+6x+9x^2=-3x-1\)
<=>\(5x^2+5x=0\)
<=> \(\orbr{\begin{cases}x=-1\left(n\right)\\x=0\left(l\right)\end{cases}}\)
1
\(\left|5x+8\right|=0\\ 5x+8=0\\ 5x=8\\ x=\dfrac{8}{5}\\ x=1.6\)
2
\(\left|1-3x\right|=1\\ 1-3x=1\\ \Rightarrow\left\{{}\begin{matrix}1-3x=1\Leftrightarrow3x=0\Leftrightarrow x=0\\1-3x=\left(-1\right)\Leftrightarrow3x=-2\Leftrightarrow x=\dfrac{-2}{3}\end{matrix}\right.\)
3
\(\left|3x+2\right|=-3\Rightarrow\varnothing\)
phương trình vô nghiệm vì giá trị tuyệt đối của mọi số điều không âm
4
\(|x-1|=3x+5\) (1)
Ta có \(|x-1|= x-1 \) khi \(x-1\ge0\Rightarrow x\ge1\)
\(\left|x-1\right|=-\left(x-1\right)=1-x\) khi \(x-1< 0\Rightarrow x< 1\)
Với \(x\ge1\) phương trình (1)
\(x-1=3x+5\\ \Leftrightarrow x-3x=5+1\\ \Leftrightarrow-2x=6\\ \Leftrightarrow x=\dfrac{-6}{2}=-3\)
x= -3 không thỏa mãn điều kiện
Với \(x< 1\) phương trình (1)
\(1-x=3x+5\\ \Leftrightarrow-x-3x=5-1\\ \Leftrightarrow-4x=4\\ \Leftrightarrow-4x\cdot\dfrac{-1}{4}=4\cdot\dfrac{-1}{4}\\ \Leftrightarrow x=-1\)
x=-1 thỏa mãn điều kiện
:v cậu đăng ít thôi nhé pai pai
này mình chưa học đâu cớ tuần sau mới học ấy nhưng mà mình coi dạng rồi làm cho cậu nè ;-;
\(3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
\(3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
Vậy \(3x^3-6x^2+3x=3x\left(x-1\right)^2\)