K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Bài toán :

3 ^x+29 = 2 ^y

Lời giải:

  1. Đơn giản biểu thức

  2. Giải phương trình

  3. Giải phương trình

30 tháng 6 2021

Thấy số dư của \(3^x\)chia cho 64 tuần hoàn sau 15 lần.

Số dư lần lượt là:3;9;27;17;51;25;11;33;35;41;59;49;19;57;43.

Không có 29 do đó \(y< 6.\)Lần lượt thử với \(y=0;1;2;3;4;5\). Ta có các nghiệm:

\(\left(x,y\right)\in\left\{\left(1;5\right)\right\}.\)

19 tháng 10 2021

tự làm đi

11 tháng 8 2023

Bạn xem kỹ lại đề có đúng không?

30 tháng 1 2016

\(x+y+z=2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032\)

<=>\(\left(x-29\right)-2\sqrt{x-29\cdot}+1+\left(y-6\right)-4\sqrt{y-6}+4+\left(z-2011\right)-6\sqrt{z-2011}+9=0\)

<=>\(\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)

cho 3 cái =0 là ra 

30 tháng 1 2016

nhân 2 lên rồi rút về hằng đẳng thức là xong bạn ak cần mk giải ra ko

19 tháng 8 2019

ráng làm nốt rồi đi ngủ thoyy

1.

a) ĐK: \(x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)

Vậy...

b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)

Vậy...

c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

Nhân cả 2 vế với \(\sqrt{2}\) ta được :

\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)

Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)

2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)

Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)

Tương tự 2 trường hợp còn lại ta đều được \(B=0\)

Vậy \(B=0\)

19 tháng 8 2019

yeu

10 tháng 6 2018

\(\sqrt{x-29}+2\sqrt{y-6}+3\sqrt{z-2011}+1016=\dfrac{1}{2}\left(x+y+z\right)\)\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)\(\Leftrightarrow-2\sqrt{x-29}-4\sqrt{y-6}-6\sqrt{z-2011}-2032=-x-y-z\)\(\Leftrightarrow(x-29-2\sqrt{x-29}+1)+(y-6-2\cdot2\sqrt{y-6}+2^2)+(z-2011-2\cdot3\sqrt{z-2011}+3^2)=0\)\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}=1\\\sqrt{y-6}=2\\\sqrt{z-2011}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-29=1\\y-6=4\\z-2011=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)

Vậy : ......................

NV
12 tháng 5 2019

ĐKXĐ: ....

\(\Leftrightarrow2\sqrt{x-29}+4\sqrt{y-6}+6\sqrt{z-2011}+2032=x+y+z\)

\(\Leftrightarrow x-29-2\sqrt{x-29}+1+y-6-4\sqrt{y-6}+4+z-2011-6\sqrt{z-2011}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-29}-1\right)^2+\left(\sqrt{y-6}-2\right)^2+\left(\sqrt{z-2011}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-29}-1=0\\\sqrt{y-6}-2=0\\\sqrt{z-2011}-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=10\\z=2020\end{matrix}\right.\)

 Ta có: y′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3) thì y′<0 với mọi x∈(2;3).

Tức là khoảng (2;3) nằm trong khoảng hai nghiệm phương trình y′=0 (Do y′=x2−2(m+1)x+m2+2m có hệ số của x2 dương).

{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

27 tháng 9 2019

Ta có: y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3)(2;3) thì y′<0y′<0 với mọi x∈(2;3).x∈(2;3).

Tức là khoảng (2;3)(2;3) nằm trong khoảng hai nghiệm phương trình y′=0y′=0 (Do y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m có hệ số của x2x2 dương).

{Δ′>0x1≤2<3≤x2⇔⎧⎪ ⎪⎨⎪ ⎪⎩(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔⎧⎪⎨⎪⎩1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

⇔{m2+2m−2.2.(m+1)+4≤0m2+2m−3.2.(m+1)+9≤0⇔{m2−2m≤0m2−4m+3≤0⇔{0≤m≤21≤m≤3⇔1≤m≤2