Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)
\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)
\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)
\(\Rightarrow\text{pt vô nghiệm}\)
b. ĐKXĐ: \(x\le-4;x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)
\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)
pt đã cho tương đương:
\(t=t^2\)
\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)
\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)
\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)
\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)
ĐK: \(x>0\)
\(PT\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)-2\left(x+\frac{1}{4x}\right)-4=0\)
Đặt: \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\left(t>0\right)\) \(\Rightarrow t^2=x+\frac{1}{4x}+1\)
\(PT\Leftrightarrow5t-2\left(t^2-1\right)-4=0\)
\(\Leftrightarrow2t^2-5t+2=0\) \(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\end{matrix}\right.\) (tm)
\(t=2\Rightarrow x+\frac{1}{4x}-3=0\Rightarrow x^2-3x+\frac{1}{4}\) \(=0\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\) (tm)
\(t=\frac{1}{2}\Rightarrow x+\frac{1}{4x}+\frac{3}{4}=0\) \(\Rightarrow x^2+\frac{3}{4}x+\frac{1}{4}=0\) (vô no)
Vậy...
\(|2x^2-3x+4|-|2x-x^2-1|=0\)
\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)
\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)
Vậy ...
\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)
\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)
\(TH1:3x^2-5x+5=0\)
Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)
\(TH2:x^2-x+3=0\)
Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)
Vậy pt vô nghiệm
a) ta có : \(x^4+3x^3-2x^2+3x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+1=0\\x^2-x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}-2+\sqrt{3}\\-2-\sqrt{3}\end{matrix}\right.\\x\in\varnothing\end{matrix}\right.\) vậy \(x=-2+\sqrt{3};x=-2-\sqrt{3}\)
b) ta có : \(x^4-2x^3-5x^2+2x+1=0\)
\(\Leftrightarrow x^4+x^3-x^2-3x^3-3x^2+3x-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2+x-1\right)-3x\left(x^2+x-1\right)-\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-1=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{3+\sqrt{13}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy \(x=\dfrac{3+\sqrt{13}}{2};x=\dfrac{3-\sqrt{13}}{2};x=\dfrac{-1+\sqrt{5}}{2};x=\dfrac{-1-\sqrt{5}}{2}\)
y = \(\dfrac{-x^2-3x+10}{\left(x^2-2x+7\right)\left(x+3\right)}\)
nghiệm của y: \(-x^2-3x+10=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
y không xác định: \(x^2-2x+7=0\) => vô nghiệm
\(x+3=0\Leftrightarrow x=-3\)
bảng xét dấu:
x | -∞ -5 -3 2 +∞ |
-x2 - 3x + 10 | - 0 + | + 0 - |
x2 - 2x + 7 | + | + | + | + |
x + 3 | - | - 0 + | + |
dấu y | + 0 - || + 0 - |
tự kết luận nhé :v