Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(4x^4+12x^3-47x^2+12x+4=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3+20x^2-7x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)\left(2x^2+11x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\\x=\frac{-11\pm\sqrt{105}}{4}\end{matrix}\right.\)
Vậy ....
1.
\(\frac{x^2+2x+5}{x+4}-\left(x-3\right)\ge0\)
\(\Leftrightarrow\frac{x^2+2x+5-\left(x-3\right)\left(x+4\right)}{x+4}\ge0\)
\(\Leftrightarrow\frac{x+17}{x+4}\ge0\Rightarrow\left[{}\begin{matrix}x>-4\\x\le-12\end{matrix}\right.\)
2.
\(\frac{x^2-3x-1}{2-x}+x>0\)
\(\Leftrightarrow\frac{x^2-3x-1+x\left(2-x\right)}{2-x}>0\)
\(\Leftrightarrow\frac{-x-1}{2-x}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)
3.
\(\frac{3x-47}{3x-1}-\frac{4x-47}{2x-1}>0\)
\(\Leftrightarrow\frac{\left(3x-47\right)\left(2x-1\right)-\left(4x-47\right)\left(3x-1\right)}{\left(3x-1\right)\left(2x-1\right)}>0\)
\(\Leftrightarrow\frac{-6x\left(x-8\right)}{\left(3x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{3}\\\frac{1}{2}< x< 8\end{matrix}\right.\)
4.
\(\frac{x\left(x+2\right)+9}{x+2}-4\ge0\)
\(\Leftrightarrow\frac{x^2+2x+9-4\left(x+2\right)}{x+2}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x+2}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x+2}\ge0\Rightarrow x>-2\)
5.
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Rightarrow\left[{}\begin{matrix}x\le-6\\1\le x< 2\\2< x< 7\\x=-2\end{matrix}\right.\)
6. Xem lại đề
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
\(21,\frac{2}{x-1}\le\frac{5}{2x-1}\left(x\ne1;x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow\frac{2}{x-1}-\frac{5}{2x-1}\le0\)
\(\Leftrightarrow\frac{4x-2-5x+5}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)
\(\Leftrightarrow\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\text{≤}0\)
x -x+3 x-1 2x-1 VT -∞ +∞ 1/2 1 3 0 0 0 | | || | | || | | 0 - + + + + + - - - + + + + + + - -
Vậy \(\frac{-x+3}{\left(x-1\right)\left(2x-1\right)}\le0\Leftrightarrow x\in\left(\frac{1}{2};1\right)\cup[3;+\text{∞})\)
23,24 tương tự 21
\(25,2x^2-5x+2< 0\) (1)
Ta có: \(\left\{{}\begin{matrix}2x^2-5x+2=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\a=2>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{2}< x< 2\)
\(26,-5x^2+4x+12< 0\)
\(\left\{{}\begin{matrix}-5x^2+4x+12=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{6}{5}\end{matrix}\right.\\a=-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\frac{6}{5}\end{matrix}\right.\)
\(27,16x^2+40x+25>0\)
\(\left\{{}\begin{matrix}16x^2+40x+25=0\Leftrightarrow x=-\frac{5}{4}\\a=16>0\end{matrix}\right.\)
\(\Leftrightarrow x\ne-\frac{5}{4}\)
\(28,-2x^2+3x-7\ge0\)
\(\left\{{}\begin{matrix}-2x^2+3x-7=0\left(vo.nghiem\right)\\a=-2< 0\end{matrix}\right.\)
\(\Rightarrow-2x^2+3x-7< 0\) ∀x
=> bpt vô nghiệm
\(29,3x^2-4x+4\ge0\)
\(\left\{{}\begin{matrix}3x^2-4x+4=0\left(vo.nghiem\right)\\a=3>0\end{matrix}\right.\)
=> \(3x^2-4x+4>0\) => bpt vô số nghiệm
\(30,x^2-x-6\le0\)
\(\left\{{}\begin{matrix}x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\a=1>0\end{matrix}\right.\)
\(\Rightarrow-2\le x\le3\)
b) \(1+4x-3|x+2|+4=0\)
\(\Leftrightarrow4x-3|x+2|=-5\left(1\right)\)
TH1: Với \(|x+2|=x+2\)thay vào (1) ta được:
\(4x-3\left(x+2\right)=-5\)
\(\Leftrightarrow4x-3x-6=-5\)
\(\Leftrightarrow x=1\)(chọn tự thử lại nhé nó =0 )
TH2: Với \(|x+2|=-x-2\)thay vào (1) ta được:
\(4x-3\left(-x-2\right)=-5\)
\(\Leftrightarrow4x+3x+6=-5\)
\(\Leftrightarrow7x=-11\)
\(\Leftrightarrow x=\frac{-11}{7}\)( loại tự thử lại nhé nó ko =0 )
Vậy x=1