Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định của phân thức: x ≠ 2
Ta có
Với thỏa mãn điều kiện xác định của phân thức
k: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
i: \(=3\left(x^2-2xy+y^2\right)=3\left(x-y\right)^2\)
\(g,27+27x+9x^2+x^3=\left(3+x\right)^3\\ i,2x^2+2y^2-x^2z+z-y^2z-2=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(x^2+y^2-1\right)\left(2-z\right)\)
\(k,8-27x^2=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(l,3x^2-6xy+3y^2=3\left(x^2-2xy+y^2\right)=3\left(x-y\right)^2\)
a: \(=\dfrac{35x^3-14x^2+55x^2-22x+35x-14+9}{5x-2}\)
\(=7x^2-11x+7+\dfrac{9}{5x-2}\)
b: \(=\dfrac{\left(2x-3\right)\left(4x^2+6x+9\right)}{2x-3}=4x^2+6x+9\)
Để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1, ta cần thực hiện phép chia đa thức.
4x - 3
_______________________
3x^2 + 2x - 1 | 12x^3 - 7x^2 + a + b
Để đa thức chia hết cho đa thức 3x^2 + 2x - 1, phần dư phải bằng 0. Vì vậy, ta có:
(12x^3 - 7x^2 + a + b) = (3x^2 + 2x - 1)(4x - 3)
Mở ngoặc, ta có:
12x^3 - 7x^2 + a + b = 12x^3 - 9x^2 + 8x^2 - 6x - 4x + 3
So sánh các hệ số tương ứng, ta có:
-7x^2 + a + b = -9x^2 + 8x^2 - 6x - 4x + 3
Từ đó, ta có hệ phương trình:
-7 = -9 + 8 => 8 = 9 - 7 => 8 = 2
a = -6
b = -4
Vậy, hệ số a = -6 và b = -4 để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1.
a) x4+2x2+1=(x2+1)2
b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)
c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)
d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)
\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)
\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)
\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)
\(a,=\left(x-1\right)^3\\ b,=\left(1-2x\right)\left(1+2x\right)\\ c,=x^3-8\\ d,=\left(3x-1\right)\left(9x^2+3x+1\right)\\ e,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(x-2\right)^2\\ h,=x^2-4y^2\\ j,=\left(x-4\right)^2\)