K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2014

Kĩ năng phân tích đa thức thành nhân tử

- Đặt nhân tử chung: \(3\text{x}^2-75=3\left(x^2-25\right)\)

- Sử dụng hằng đẳng thức: \(x^2-25=x^2-5^2=\left(x-5\right)\left(x+5\right)\)

Từ đó ta có cách giải phương trình

\(3\text{x}^2-75=0\Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\)

Khi đó, \(x=5\) hoặc  \(\text{x}=-5\)

 

16 tháng 10 2019

1)3.x^2 - 75 = 0

3.x^2 - 3.25 = 0

3.(x^2-25)=0

x^2-5^2=0

(x-5)(x+5)=0

=> x-5=0 hoặc x+5=0

=> x=5 hoặc x=-5

   

16 tháng 10 2019

1) \(3x^2-75=0\)

\(\Leftrightarrow3\left(x^2-25\right)=0\)

\(\Leftrightarrow x^2-25=0\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)

2) \(x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

3) \(x^3+3x^2+3x=0\)

\(\Leftrightarrow x^3+3x^2+3x+1=1\)

\(\Leftrightarrow\left(x+1\right)^3=1^3\)

\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)

2 tháng 11 2017

a) 4x(x - 5) - (x - 1)(4x - 3) = 5

4x2 - 20x - (4x2 - 3x - 4x + 3) = 5

4x2 - 20x - 4x2 + 3x + 4x - 3 = 5

-13x - 3 = 5

\(\Rightarrow\) -13x = 8

\(\Rightarrow\) x = \(\dfrac{-8}{13}\)

b) (3x - 4)(x - 2) = 3x(x - 9) - 3

3x2 - 6x - 4x + 8 = 3x2 - 27x - 3

3x2 - 10x + 8 - 3x2 + 27x + 3 = 0

17x + 11 = 0

\(\Rightarrow\) 17x = -11

\(\Rightarrow\) x = \(\dfrac{-11}{17}\)

c) x2 - 81 = 0

\(\Rightarrow\) x2 = 81

\(\Rightarrow\) x = \(\pm\) 9

d) 3x2 - 75 = 0

3(x2 - 25) = 0

\(\Rightarrow\) x2 - 25 = 0

\(\Rightarrow\) x2 = 25

\(\Rightarrow\) x = \(\pm\)5

e) x2 - 4x + 3 = 0

x2 - x - 3x + 3 = 0

(x2 - x) - (3x - 3) = 0

x(x - 1) - 3(x - 1) = 0

(x - 3)(x - 1) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

xin lỗi vì chữa đề

27 tháng 7 2017

x2 - 4 = 0

x2 = 4

\(\orbr{\begin{cases}x^2=2^2\\x^2=\left(-2\right)^2\end{cases}}\)

\(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

3x2 - 75 = 0

3x2 = 75

x2 = 25

\(\orbr{\begin{cases}x^2=5^2\\x^2=\left(-5\right)^2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)

( x + 2 )2 = 25

\(\orbr{\begin{cases}\left(x+2\right)^2=5^2\\\left(x+2\right)^2=\left(-5\right)^2\end{cases}}\)

\(\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}}\)

\(\orbr{\begin{cases}x=3\\x=-7\end{cases}}\)

28 tháng 10 2015

Tích mình đi rồi mình nói thề bạn

6 tháng 10 2019

a) \(8x^3-x=0\)

\(\Leftrightarrow x\left(8x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\8x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{1}{8}}\end{cases}}\)

b) \(x\left(x-5\right)=2x-10\)

\(\Leftrightarrow x\left(x-5\right)=2\left(x-5\right)\)

\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

6 tháng 10 2019

c) \(3x^2+30x=-75\)

\(\Leftrightarrow x^2+10x=-25\)

\(\Leftrightarrow x^2+10x+25=0\)

\(\Leftrightarrow\left(x+5\right)^2=0\)

\(\Leftrightarrow x+5=0\Leftrightarrow x=-5\)

19 tháng 8 2017

\(x^2-36=0\Rightarrow x^2=36\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

\(3x^2-75=0\)

\(\Rightarrow3\left(x^2-25\right)=0\)

\(\Rightarrow x^2-25=0\Rightarrow x^2=25\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

\(4x^2-4x+1=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

\(\left(x+3\right)^2-4=0\)

\(\Rightarrow\left(x+3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)

19 tháng 8 2017

a) \(x^2-36=0\Leftrightarrow x^2=36\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{36}\\x=-\sqrt{36}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

vậy \(x=6;x=-6\)

b) \(3x^2-75=0\Leftrightarrow3\left(x^2-25\right)=0\Leftrightarrow x^2-25=0\Leftrightarrow x^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{25}\\x=-\sqrt{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\) vậy \(x=5;x=-5\)

c) \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)

d) \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x+3=\sqrt{4}\\x+3=-\sqrt{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\) vậy \(x=-1;x=-5\)

6 tháng 11 2018

1, 2x\(^2\) -8=0

2x\(^2\) =8

x\(^2\) =4 \(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2, 3x\(^2\) -75=0

3x\(^2\) = 75

x\(^2\) = 25 \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

3, (x+3)\(^2\) =4

\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)

4, (x-1)\(^2\)-81=0

(x-1)\(^2\) =81 \(\Rightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)

5, x\(^2\) +4x-21=0

x(x+4)=21

\(\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x+4=7\end{matrix}\right.\) \(\Rightarrow x=3\)

6, x\(^3\) =25x

x(x\(^2\) - 5\(^2\) )=0

x(x-5)(x+5)=0

\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)

8, x\(^3\) - 49x=0

x(x-7)(x+7)=0

\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-7=0\\x+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=7\\x=-7\end{matrix}\right.\)

6 tháng 11 2018

1)

\(2x^2-8=0\\ \Leftrightarrow2\left(x^2-4\right)=0\\ \Leftrightarrow2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy...

2)

\(3x^2-75=0\\\Leftrightarrow 3\left(x^2-25\right)=0\\ \Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

Vậy...

3)

\(\left(x+3\right)^2=4\\ \Leftrightarrow\left(x+3\right)^2-4=0\\ \Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\\\Leftrightarrow \left(x+1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)

Vậy...

4)

\(\left(x-1\right)^2-81=0\\ \Leftrightarrow\left(x-1-9\right)\left(x-1+9\right)=0\\\Leftrightarrow \left(x-10\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)

Vậy...

a) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: S={-5;2}

b) Ta có: \(3x^2-7x+1=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)

c) Ta có: \(3x^2-7x+8=0\)

\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)

mà 3>0

nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)

Vậy: \(x\in\varnothing\)

15 tháng 3 2022

ko bt