Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)
a) 4x(x - 5) - (x - 1)(4x - 3) = 5
4x2 - 20x - (4x2 - 3x - 4x + 3) = 5
4x2 - 20x - 4x2 + 3x + 4x - 3 = 5
-13x - 3 = 5
\(\Rightarrow\) -13x = 8
\(\Rightarrow\) x = \(\dfrac{-8}{13}\)
b) (3x - 4)(x - 2) = 3x(x - 9) - 3
3x2 - 6x - 4x + 8 = 3x2 - 27x - 3
3x2 - 10x + 8 - 3x2 + 27x + 3 = 0
17x + 11 = 0
\(\Rightarrow\) 17x = -11
\(\Rightarrow\) x = \(\dfrac{-11}{17}\)
c) x2 - 81 = 0
\(\Rightarrow\) x2 = 81
\(\Rightarrow\) x = \(\pm\) 9
d) 3x2 - 75 = 0
3(x2 - 25) = 0
\(\Rightarrow\) x2 - 25 = 0
\(\Rightarrow\) x2 = 25
\(\Rightarrow\) x = \(\pm\)5
e) x2 - 4x + 3 = 0
x2 - x - 3x + 3 = 0
(x2 - x) - (3x - 3) = 0
x(x - 1) - 3(x - 1) = 0
(x - 3)(x - 1) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
xin lỗi vì chữa đề
x2 - 4 = 0
x2 = 4
\(\orbr{\begin{cases}x^2=2^2\\x^2=\left(-2\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3x2 - 75 = 0
3x2 = 75
x2 = 25
\(\orbr{\begin{cases}x^2=5^2\\x^2=\left(-5\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
( x + 2 )2 = 25
\(\orbr{\begin{cases}\left(x+2\right)^2=5^2\\\left(x+2\right)^2=\left(-5\right)^2\end{cases}}\)
\(\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}}\)
\(\orbr{\begin{cases}x=3\\x=-7\end{cases}}\)
a) \(8x^3-x=0\)
\(\Leftrightarrow x\left(8x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\8x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{1}{8}}\end{cases}}\)
b) \(x\left(x-5\right)=2x-10\)
\(\Leftrightarrow x\left(x-5\right)=2\left(x-5\right)\)
\(\Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
\(x^2-36=0\Rightarrow x^2=36\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
\(3x^2-75=0\)
\(\Rightarrow3\left(x^2-25\right)=0\)
\(\Rightarrow x^2-25=0\Rightarrow x^2=25\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(4x^2-4x+1=0\)
\(\Rightarrow\left(2x-1\right)^2=0\)
\(\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
\(\left(x+3\right)^2-4=0\)
\(\Rightarrow\left(x+3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
a) \(x^2-36=0\Leftrightarrow x^2=36\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{36}\\x=-\sqrt{36}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
vậy \(x=6;x=-6\)
b) \(3x^2-75=0\Leftrightarrow3\left(x^2-25\right)=0\Leftrightarrow x^2-25=0\Leftrightarrow x^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{25}\\x=-\sqrt{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\) vậy \(x=5;x=-5\)
c) \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)
d) \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x+3=\sqrt{4}\\x+3=-\sqrt{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\) vậy \(x=-1;x=-5\)
1, 2x\(^2\) -8=0
2x\(^2\) =8
x\(^2\) =4 \(\Rightarrow\) \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2, 3x\(^2\) -75=0
3x\(^2\) = 75
x\(^2\) = 25 \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
3, (x+3)\(^2\) =4
\(\Rightarrow\left[{}\begin{matrix}x+3=2\\x+3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
4, (x-1)\(^2\)-81=0
(x-1)\(^2\) =81 \(\Rightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
5, x\(^2\) +4x-21=0
x(x+4)=21
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=3\\x+4=7\end{matrix}\right.\) \(\Rightarrow x=3\)
6, x\(^3\) =25x
x(x\(^2\) - 5\(^2\) )=0
x(x-5)(x+5)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
8, x\(^3\) - 49x=0
x(x-7)(x+7)=0
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-7=0\\x+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\x=7\\x=-7\end{matrix}\right.\)
1)
\(2x^2-8=0\\ \Leftrightarrow2\left(x^2-4\right)=0\\ \Leftrightarrow2\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy...
2)
\(3x^2-75=0\\\Leftrightarrow 3\left(x^2-25\right)=0\\ \Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy...
3)
\(\left(x+3\right)^2=4\\ \Leftrightarrow\left(x+3\right)^2-4=0\\ \Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\\\Leftrightarrow \left(x+1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
Vậy...
4)
\(\left(x-1\right)^2-81=0\\ \Leftrightarrow\left(x-1-9\right)\left(x-1+9\right)=0\\\Leftrightarrow \left(x-10\right)\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
Vậy...
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
Kĩ năng phân tích đa thức thành nhân tử
- Đặt nhân tử chung: \(3\text{x}^2-75=3\left(x^2-25\right)\)
- Sử dụng hằng đẳng thức: \(x^2-25=x^2-5^2=\left(x-5\right)\left(x+5\right)\)
Từ đó ta có cách giải phương trình
\(3\text{x}^2-75=0\Leftrightarrow3\left(x-5\right)\left(x+5\right)=0\)
Khi đó, \(x=5\) hoặc \(\text{x}=-5\)