Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vũ Hồng Linh bạn check lại bài đầu dùm =_="
\(\left[-\frac{1}{3}\right]^3\cdot x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{3}\right]^3\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{27}\right]\)
\(\Leftrightarrow x=\frac{1}{81}\cdot(-27)=-\frac{1}{3}\)
\(\left[x-\frac{1}{2}\right]^3=\frac{1}{27}\)
\(\Leftrightarrow\left[x-\frac{1}{2}\right]^3=\left[\frac{1}{3}\right]^3\)
=> Làm nốt
Mấy bài kia cũng làm tương tự
(- \(\dfrac{1}{3}\))3.\(x\) = \(\dfrac{1}{81}\)
\(x=\dfrac{1}{81}\) : (- \(\dfrac{1}{3}\))3
\(x\) = - (\(\dfrac{1}{3}\))4 :(\(\dfrac{1}{3}\))3
\(x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
a)\(\left(\frac{3}{5}\right)^5\times x=\left(\frac{3}{7}\right)^7\)
\(\Leftrightarrow\frac{3^5}{5^5}\times x=\frac{3^7}{7^7}\)
\(\Leftrightarrow x=\frac{3^7}{7^7}:\frac{3^5}{5^5}\)
\(\Leftrightarrow x=\frac{3^7\times5^5}{7^7\times3^5}\)
\(\Leftrightarrow x=\frac{3^2\times5^5}{7^7}\)
b)\(\left(\frac{-1}{3}\right)^3\times x=\frac{1}{81}\)
\(\Leftrightarrow\frac{\left(-1\right)^3}{3^3}\times x=\frac{1}{3^4}\)
\(\Leftrightarrow x=\frac{1}{3^4}:\frac{-1}{3^3}\)
\(\Leftrightarrow x=\frac{1\times3^3}{3^4\times\left(-1\right)}\)
\(\Leftrightarrow x=\frac{1}{-3}\)
c)\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
d)\(\Leftrightarrow\left(x+\frac{1}{2}\right)^4=\left(\frac{2}{3}\right)^4\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{6}\)
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
1)
Ta có: \(\left(x-\frac{1}{2}\right)^3=8\Rightarrow\left(x-\frac{1}{2}\right)^3=2^3\)
\(\Rightarrow x-\frac{1}{2}=2\Rightarrow x=2+\frac{1}{2}=\frac{5}{2}\)
\(\left(x-1\right)^3=\frac{8}{27}\Rightarrow\left(x-1\right)^3=\left(\frac{2}{3}\right)^3\)
\(\Rightarrow x-1=\frac{2}{3}\Rightarrow x=\frac{2}{3}+1=\frac{5}{3}\)
\(-3^x+2=-27.81\)
<=> \(-3^x=-27.81-2=-2189\)
<=> \(3^x=2189\)
=> \(x\in\varnothing\)