Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{x+1}+2x+3^x-18x-27=0\)
<=> \(3^x\left(3+2x\right)-9\left(2x+3\right)=0\)
<=> \(\left(2x+3\right)\left(3^x-9\right)=0\)
<=>\(\orbr{\begin{cases}x=-\frac{3}{2}\\x=2\end{cases}}\)
vậy.......
3x + 1 + 2x .3x - 18x - 27 = 0
<=> 3x ( 3 + 2x ) - 9 ( 2x + 3 ) = 0
<=> ( 3x - 9 ) ( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}3^x-9=0\\2x+3=0\end{cases}}\)<=>\(\orbr{\begin{cases}3^x=9\\2x=-3\end{cases}}\)
<=>\(\orbr{\begin{cases}3^x=3^2\\x=-\frac{3}{2}\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
vẽ hệ trục tọa dộ oxy và danh dau cac điểm A(-2,3): B(6;-1); (4;-5); D(-4;-1)
a, Có thể nói DB// trục hoành duoc không?
b Từ A va C ta có thể vẽ nhngx duong thag song song truc tung nó cat BD lần lượt ở M va N
CM:Tam giac ADM = tam giác CBN ; TAm giác ABM =mTAm giác CDN
c, CM: AD//BC; AB//DC
CÂU A
Để M.....>0 suy ra \(\hept{\begin{cases}x+10>0\\x-7>0\end{cases}}\)hoặc \(\hept{\begin{cases}x+10< 0\\x-7< 0\end{cases}}\)
suy ra \(\hept{\begin{cases}x>-10\\x>7\end{cases}}\)hoặc\(\hept{\begin{cases}x< -10\\x< 7\end{cases}}\)
suy ra x>-10 hoặc x<7 suy ra -10<x<7
M<1 => \(\frac{x-3}{x+2}\)<1
<=> \(\frac{x-3}{x+2}\)- 1 < 0
<=> \(\frac{x-3}{x+2}\)-\(\frac{x+2}{x+2}\)< 0
<=> \(\frac{x-3-x-2}{x+2}\)< 0
<=> -5 < 0
=> Vô nghiệm
\(\left(2x-3\right)^2=16\)
\(\Rightarrow\left(2x-3\right)^2=4^2\)
\(\Rightarrow2x-3=4\)
\(\Rightarrow2x=4+3\)
\(\Rightarrow2x=7\)
\(\Rightarrow x=\frac{7}{2}\)
( x - 34 ) x 15 = 0
<=> x - 34 = 0
<=> x = 34
18 x ( x - 16 ) = 18
<=> x - 16 = 1
<=> x = 17
(x-34).15=0 18.(x-16)=18
x-34 =0:15 x-16 =18:18
x-34 =0 x-16 =1
x=0+34 x=1+16
x=34 x= 17
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
Biến đổi thành : \(\left(3^x-9\right)\left(2x+3\right)=0\)
hoặc \(\Rightarrow\orbr{\begin{cases}3^x-9=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1,5\end{cases}}}\)
Vậy \(x\in\){2;-1,5}