Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)
2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)
3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)
4, sửa đề :
\(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)
5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)
a) x2(x-3)-4x+12
=x2(x-3)-4(x-3)
=(x-3)(x2-4)
=(x-3)(x-2)(x+2)
b) 2a(x+y)-x-y
=2a(x+y)-(x+y)
=(x+y)(2a-1)
c) 2x-4+5x2-10x
=2(x-2)+5x(x-2)
=(x-2)(2+5x)
d) 5x2-12x-7x+14
=5x2-19x+14
e) xy-y2-3x+3y
=y(x-y)-3(x-y)
=(x-y)(y-3)
#H
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
a) \(81-\left(3x+2\right)^2=9^2-\left(3x+2\right)^2=\left(9-3x-2\right)\left(9+3x+2\right)=\left(7-3x\right)\left(11+3x\right)\)
b) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)=15\left(x-1\right)\left(3x-1\right)\)
c) \(9\left(x-5y\right)^2-16\left(x+y\right)^2=\left[3\left(x-5y\right)-4\left(x+y\right)\right]\left[3\left(x-5y\right)+4\left(x+y\right)\right]\)
\(=\left(-x-19y\right)\left(7x-11y\right)\)
a) = x2 + 2x + 3x + 6 = x( x + 2 ) + 3( x + 2 ) = ( x + 2 )( x + 3 )
b) = x2 - x + 4x - 4 = x( x - 1 ) + 4( x - 1 ) = ( x - 1 )( x + 4 )
c) = ( x2 - 10x + 25 ) - 9 = ( x - 5 )2 - 32 = ( x - 8 )( x - 2 )
d) = 6x2 - 15x + 8x - 20 = 3x( 2x - 5 ) + 4( 2x - 5 ) = ( 2x - 5 )( 3x + 4 )
a) x2 + 5x + 6 = x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2) = (x + 3)(x + 2)
b) x2 + 3x - 4 = x2 - x + 4x - 4 = x(x - 1) + 4(x - 1) = (x + 4)(x - 1)
c) x2 - 10x + 16 = x2 - 2x - 8x + 16 = x(x - 2) - 8(x - 2) = (x - 8)(x - 2)
d) 6x2 - 7x - 20 = 6x2 + 8x - 15x - 20 = 2x(3x + 4) - 5(3x + 4) = (2x - 5)(3x + 4)