Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|1/2x| = 3 - 2x
ĐKXĐ : 3 - 2x \(\ge\)0 => 2x \(\ge\) 3 => x \(\ge\)3/2
Ta có: |1/2x| = 3 - 2x
=> \(\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{2}x+2x=3\\\frac{1}{2}x-2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=3\\-\frac{3}{2}x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{6}{5}\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
=> x = 2
|5x| = x - 12
ĐKXĐ : x - 12 \(\ge\)0 => x \(\ge\)12
Ta có: |5x| = x - 12
=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\)
=> \(\orbr{\begin{cases}5x-x=-12\\5x+x=12\end{cases}}\)
=> \(\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)(ktm)
=> pt vô nghiệm
|2x - 5| = x + 1
ĐKXĐ: x + 1 \(\ge\)0 => x \(\ge\)-1
Ta có: |2x - 5| = x + 1
=> \(\orbr{\begin{cases}2x-5=x+1\\2x-5=-x-1\end{cases}}\)
=> \(\orbr{\begin{cases}2x-x=1+5\\2x+x=-1+5\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\3x=4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=\frac{4}{3}\end{cases}}\)(tm)
Vậy ...
|7 - 2x| + 7 = 2x
=> |7 - 2x| = 2x - 7
ĐKXĐ: 2x - 7 \(\ge\)0 => 2x \(\ge\) 7 => x \(\ge\) 7/2
Ta có: |7 - 2x| = 2x - 7
=> \(\orbr{\begin{cases}7-2x=2x-7\\7-2x=7-2x\end{cases}}\)
=> 7 + 7 = 2x + 2x
hoặc x tùy ý (TMĐK)
=> 4x = 14 => x = 7/2
hoặc x tùy ý (Tm ĐK)
Vậy ...
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
\(B\left(x\right)=x^5+3x^3+x=x\left(x^4+3x^2+1\right)=x\left(x^4+x^2+x^2+1+x^2\right)=x\left[x^2\left(x^2+1\right)+x^2+1+x^2\right]\)
\(=x\left[\left(x^2+1\right)\left(x^2+1\right)+x^2\right]=x\left[\left(x^2+1\right)^2+x^2\right]\)
Vì: \(x^2+1>0,x^2\ge0\)nên \(\left(x^2+1\right)^2+x^2>0\)
Vậy B(x) có nghiệm khi x=0
a) 4x + 1/3 = 3/4
=> 4x = 3/4 - 1/3
=> 4x = 5/12
=> x = 5/12 : 4
=> x = 5/48
b) 1/3 - 2/5 + 3x = 3/4
=> -1/15 + 3x = 3/4
=> 3x = 3/4 + 1/15
=> 3x = 49/60
=> x = 49/ 60 : 3
=> x = 49/180
c) 3(1/2 - x) + 1/3 = 7/6 - x
=> 3/2 - 3x + 1/3 = 7/6 - x
=> 11/6 - 3x = 7/6 - x
=> 11/6 - 7/6 = -x + 3x
=> 2/3 = 2x
=> x = 2/3 : 2
=> x = 1/3
a) \(4x+\frac{1}{3}=\frac{3}{4}\)
\(4x=\frac{3}{4}-\frac{1}{3}\)
\(4x=\frac{9}{12}-\frac{4}{12}\)
\(4x=\frac{5}{12}\)
\(x=\frac{5}{12}:\frac{4}{1}=\frac{5}{12}.\frac{1}{4}\)
\(x=\frac{5}{48}\)
Ta có :
5x + 1 - ( 5x - x2 )
= 5x + 1 - 5x + x2
= x2 + 1
vì x2 \(\ge\)0 nên x2 + 1 > 0
Vậy đa thức trên không có nghiệm
a. x ( 5x - 3 ) - x2 ( x - 1 ) + x ( x2 - 6x ) - 10 + 3x
= 5x2 - 3x - x3 + x2 + x3 - 6x2 - 10 + 3x
= ( - x3 + x3 ) + ( 5x2 + x2 - 6x2 ) + ( - 3x + 3x ) - 10
= - 10
=> Giá trị của bthuc trên không phụ thuộc vào biến
b. x ( x2 + x + 1 ) - x2 ( x + 1 ) - x + 5
= x3 + x2 + x - x3 - x2 - x + 5
= ( x3 - x3 ) + ( x2 - x2 ) + ( x - x ) + 5
= 5
=> Giá trị của bthuc trên không phụ thuộc vào biến
a, mình bổ sung cho đề là \(5x^2+6x-\frac{1}{3}\)( hoặc là trừ thì cũng làm tương tự :)
Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2+6x-\frac{1}{3}=10x^2+4x+\frac{14}{3}\)
b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay
\(5x^2-2x+5-5x^2-6x+\frac{1}{3}=-8x+\frac{16}{3}\)
c, Đặt \(-8x+\frac{16}{3}=0\Leftrightarrow-8\left(x-\frac{2}{3}\right)=0\Leftrightarrow x=\frac{2}{3}\)
Vậy x = 2/3 là nghiệm đa thức trên
a, Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2-6x-\frac{1}{3}=10x^2-8x+\frac{14}{3}\)
b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay \(5x^2-2x+5-5x^2+6x+\frac{1}{3}=4x+\frac{16}{3}\)
c, Đặt \(f\left(x\right)-g\left(x\right)=0\)hay \(4x+\frac{16}{3}=0\)
\(\Leftrightarrow4x=-\frac{16}{3}\Leftrightarrow x=-\frac{16}{8}=-2\)
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)