Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: 2(x+1)=3+2x2(x+1)=3+2x
⇔2x+2=3+2x⇔0x=1⇔2x+2=3+2x⇔0x=1
Vậy phương trình vô nghiệm.
b. Ta có: 2(1−1,5x)+3x=02(1−1,5x)+3x=0
⇔2−3x+3x=0⇔2+0x=0⇔2−3x+3x=0⇔2+0x=0
Vậy phương trình vô nghiệm.
c. Vì |x|≥0|x|≥0 nên phương trình |x|=−1|x|=−1 vô nghiệm.
cứ đưa vào máy vinacal... ra nghiệm ảo thì là vô nghiệm.. hé hé hé :))))
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
a) 2(x+1) = 3 +2x
\(\Leftrightarrow\)2x +2 = 3 + 2x
\(\Leftrightarrow\)2x - 2x = 3 -2
\(\Leftrightarrow\)0x = 1
\(\Leftrightarrow\)x = \(\frac{1}{0}\) ( Không xác định )
=> Phương trình vô nghiệm
b) 2( 1- 1,5x) +3x = 0
\(\Leftrightarrow\)2 - 3x + 3x = 0
\(\Leftrightarrow\)2 + 0x = 0
\(\Leftrightarrow\)0x = -2
\(\Leftrightarrow\)x = \(\frac{-2}{0}\)( Không xác định )
=> Phương trình vô nghiệm
a/ ta có: 2(x+1)=3+2x
=> 2x +2 = 3+ 2x
=>2x-2x=3-2
=>0=1 (vô lí) =>đpcm
b/ 2(1-1,5x)+3x=0 =>2-3x+3x=0
=>0=-2 (vô lí ) =>đpcm
c/ vô nghiệm vì không có giá trị tuyệt đối nào mà kết quả là số âm
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)
\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)
b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)
Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.
a) 2(x+1)=3.2x
<=> 2x + 2 = 3 + 2x
<=> 2x - 2x = 3-2
<=> 0x = 1 => pt vô nghiệm.
b)2(1-1,5x)+3x=0
<=> 2 - 3x = -3x
<=> 2 = -3x + 3x => pt vô nghiệm.