K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Ta có: 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\) => \(\frac{a^2}{49}=\frac{b^2}{9}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

=> \(\hept{\begin{cases}\frac{a^2}{49}=4\\\frac{b^2}{9}=4\end{cases}}\) => \(\hept{\begin{cases}a^2=196\\b^2=36\end{cases}}\) => \(\hept{\begin{cases}a=\pm14\\b=\pm6\end{cases}}\)

Vậy ...

Ta có : \(3a=7b\)

\(\Rightarrow\frac{a}{7}=\frac{b}{3}\)

Áp dụng TC của dãy tỉ số bằng nhau  ta có :

\(\frac{a}{7}=\frac{b}{3}=\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

\(\Rightarrow\hept{\begin{cases}a=4.7=28\\b=4.3=12\end{cases}}\)

8 tháng 9 2016

Có: 3a=7b

=> \(\frac{a}{7}=\frac{b}{3}\Rightarrow\)\(\frac{a^2}{49}=\frac{b^2}{9}\)

Áp dụng tính chất của dãy tie số bằng nhau ta có:

\(\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

=>\(\frac{a^2}{49}=4\Rightarrow a=14\)

    \(\frac{b^2}{9}=4\Rightarrow b=6\)

23 tháng 8 2017

A=14

B=6

7 tháng 10 2017

Ta có : 3a = 7b \(\Rightarrow\frac{a}{7}=\frac{b}{3}\)

Đặt \(k=\frac{a}{7}=\frac{b}{3}\)

Suy ra : \(k^2=\frac{a^2}{7^2}=\frac{b^2}{3^2}=\frac{a^2}{49}=\frac{b^2}{9}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

=> k = -2 ; 2

+ a = -2 thì a/7 = -2 => a = -14 

                  b/3 = -2 => b = -6

+ a = 2 thì a/7 = 2 => a = 14 

                  b/3 = 2 => b = 6

Vậy ...................................

3 tháng 11 2019

a) Vì BCNN(5;3;8)=120

\(\Rightarrow5a=8b=3c\Leftrightarrow\frac{5a}{120}=\frac{8b}{120}=\frac{3c}{120}=\frac{a}{24}=\frac{b}{15}=\frac{c}{40}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{24}=\frac{b}{15}=\frac{c}{40}=\frac{a}{24}=\frac{2b}{30}=\frac{c}{40}=\frac{a-2b+c}{24-30+40}=\frac{34}{34}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=1.24=24\\b=1.15=15\\c=1.40=40\end{matrix}\right.\)

Vậy...

b)Có: \(3a=7b\Leftrightarrow\frac{a}{7}=\frac{b}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{7}=\frac{b}{3}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

\(\Rightarrow\left\{{}\begin{matrix}a=4.7=28\\b=4.3=12\end{matrix}\right.\)

Vậy...

c) Vì BCNN(15;10;6)=30

\(\Rightarrow15a=10b=6c\Leftrightarrow\frac{15a}{30}=\frac{10b}{30}=\frac{6c}{30}=\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)

Thay\(a=2k;b=3k;c=5k\) vào \(abc=-1920\), ta có:

\(2k.3k.5k=-1920\\ \Leftrightarrow30k^3=-1920\\ \Leftrightarrow k^3=-64\\ \Leftrightarrow k^3=\left(-4\right)^3\\ \Leftrightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=-4.2=-8\\b=-4.3=-12\\c=-4.5=-20\end{matrix}\right.\)

Vậy...

3 tháng 11 2019

Tìm a b c biết 5a = 8b = 3c và a - 2b + c = 34,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

4 tháng 2 2018

\(3a=7b\)

\(\Rightarrow\frac{a}{b}=\frac{7}{3}\)

\(a-b=-20\)

\(\Rightarrow\hept{\begin{cases}a=-20:\left(7-3\right).7=-35\\b=-20:\left(7-3\right).3=-15\end{cases}}\)

4 tháng 2 2018

3a=7b ->a/7=b/3 va a-b=-20 adtc:day ti so = a/7=b/3=a-b/7-3=-20/4=-5    a/7=-5 ->a=-25      b/3=-5->b=-15

1 tháng 9 2017

Ta có : 4a = 3b => 28a = 21b (1)

            7b = 5c => 21b = 15c (2)

Từ (1) và (2) => 28a = 21b = 15c 

Ta có : 28a = 21b = 15c \(=\frac{a}{\frac{1}{28}}=\frac{b}{\frac{1}{21}}=\frac{c}{\frac{1}{15}}=\frac{2a}{\frac{1}{14}}=\frac{3b}{\frac{1}{7}}=\frac{2a+3b-c}{\frac{1}{14}+\frac{1}{7}-\frac{1}{15}}=\frac{186}{\frac{31}{210}}=1260\)

Nên : 28a = 1260 => a = 45

         21b = 1260 => b = 60

         15c = 1260 => c = 84

Vậy ........................

1 tháng 9 2017

Ta có:

 \(4a=3b\)=> \(\frac{a}{3}=\frac{b}{4}\)=> \(\frac{a}{15}=\frac{b}{20}\left(1\right)\)

\(7b=5c\)=>\(\frac{b}{5}=\frac{c}{7}\) => \(\frac{b}{20}=\frac{c}{28}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\)

=>\(\frac{a}{15}=\frac{b}{20}=\frac{c}{28}\)=>\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a}{30}=\frac{3b}{60}=\frac{c}{28}=\frac{2a+3b-c}{30+60-28}=\frac{186}{62}=3\)

=>\(\frac{a}{15}=3\)=>\(a=45\)

    \(\frac{b}{20}=3\)=>\(b=60\)

    \(\frac{c}{28}=3\)=>\(c=84\)

Vậy \(a=40;b=60;c=84\)

Ta có: \(2a=3b\)=> \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{21}=\frac{b}{14}\left(1\right)\)

          \(5b=7c\)=>\(\frac{b}{7}=\frac{c}{5}\) =>\(\frac{b}{14}=\frac{c}{10}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\)

=>\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

=>\(\frac{a}{21}=2\)=>\(a=42\)

    \(\frac{b}{14}=2\)=>\(b=28\)

    \(\frac{c}{10}=2\)=>\(c=20\)

Vậy \(a=42;b=28;c=20\)