K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(36+2xy-x^2-y^2\)

\(=36-\left(x^2-2xy+y^2\right)\)

\(=6^2-\left(x-y\right)^2\)

\(=\left(6-x+y\right)\left(6+x-y\right)\)

24 tháng 11 2021

x2-2xy+y2-36
= (x2-2xy+y2)-62
= (x-y)2-62
= (x-y+6)(x-y-6)

24 tháng 11 2021

sai một tí nha

27 tháng 10 2021

mình đang cần gấp hộ minh với

28 tháng 10 2021

\(x^2-36+2xy+y^2=\left(x^2+2xy+y^2\right)-36=\left(x+y\right)^2-6^2=\left(x+y+6\right)\left(x+y-6\right)\)

26 tháng 11 2019

\(2xy-x^2-y^2+36\)

\(=-\left(x^2+2xy-y^2\right)+36\)

\(=-\left(x^2-2xy+y^2\right)+36\)

\(=-\left(x-y\right)^2+6^2\)

\(=-\left(x-y+6\right).\left(x-y-6\right)\)

26 tháng 11 2019

Ta có: \(2xy-x^2-y^2+36=-\left(x^2-2xy+y^2-36\right)\)

\(=-\left[\left(x-y\right)^2-36\right]=-\left(x-y-6\right)\left(x-y+6\right)\)

25 tháng 7 2020

a) x2 +2xy + x + 2y

= (x2 +2xy) + (x + 2y)

= x(x + 2y) + (x + 2y)

= (x + 2y)(x + 1)

b) 7x2 - 7xy - 5x + 5y

= (7x2 - 7xy) - (5x - 5y)

= 7x(x - y) - 5(x - y)

= (x - y)(7x - 5)

c) 3(x + 2) - y(x + 2)

= (x + 2)(3 - y)

d) 5(x - 3) + y(3 - x)

= 5(x - 3) - y(x - 3)

= (x - 3)(5 - y)

e) (x2 - 8)2 + 36

= x4 - 16x2 + 64 + 36

= x4 - 16x2 + 100

= x4 + 20x2 - 36x2 + 100

= (x4 + 20x2 + 100) - 36x2

= (x2 + 10)2 - (6x)2

= (x2 + 10 - 6x)(x2 + 10 + 6x)

27 tháng 8 2018

\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)

Dấu " = " xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy Min Q là : \(36\Leftrightarrow x=y=0\)

AH
Akai Haruma
Giáo viên
6 tháng 7

Câu 1:

$(2x^2-3)(x+5)=2x^2(x+5)-3(x+5)=2x^3+10x^2-3x-15$

 

AH
Akai Haruma
Giáo viên
6 tháng 7

Câu 2:

a.

$(x+3)^2=x^2+2.x.3+3^2=x^2+6x+9$

b.

$y^2-25=y^2-25$
 

9 tháng 10 2020

a) 36 - 4a2 + 20ab - 25b2 = 36 - ( 4a2 - 20ab + 25b2 ) = 62 - ( 2a - 5b )2 = ( 6 - 2a + 5b )( 6 + 2a - 5b )

b) ( xy + 4 )2 - 4( x + y )= ( xy + 4 )2 - 22( x + y )2 = ( xy + 4 )2 - [ 2( x + y ) ]2 

                                        = ( xy + 4 )2 - ( 2x + 2y )2 = ( xy + 4 - 2x - 2y )( xy + 4 + 2x + 2y )

                                        = [ x( y - 2 ) - 2( y - 2 ) ][ x( y + 2 ) + 2( y + 2 ) ]

                                        = ( y - 2 )( x - 2 )( y + 2 )( x + 2 )

c) x2 + y2 - x2y2 + xy - x - y

= ( x2 - x2y2 ) + ( y2 - y ) + ( xy - x )

= x2( 1 - y2 ) + y( y - 1 ) + x( y - 1 )

= x2( 1 - y )( 1 + y ) - y( 1 - y ) - x( 1 - y )

= ( 1 - y )[ x2( 1 + y ) - y - x ) ]

= ( 1 - y )( x2 + x2y - y - x )

= ( 1 - y )[ ( x2 - x ) + ( x2y - y ) ]

= ( 1 - y )[ x( x - 1 ) + y( x2 - 1 ) ]

= ( 1 - y )[ x( x - 1 ) + y( x - 1 )( x + 1 ) ]

= ( 1 - y )( x - 1 )[ x + y( x + 1 ) ]

= ( 1 - y )( x - 1 )( x + xy + y )

d) 3x + 3y - x2 - 2xy - y2

= 3( x + y ) - ( x2 + 2xy + y2 )

= 3( x + y ) - ( x + y )2

= ( x + y )( 3 - x - y )

e) ( 2xy + 1 )2 - ( 2x + y )2

= ( 2xy + 1 - 2x - y )( 2xy + 1 + 2x + y )

= [ ( 2xy - 2x ) - ( y - 1 ) ][ ( 2xy + 2x ) + ( y + 1 ) ]

= [ 2x( y - 1 ) - ( y - 1 ) ][ 2x( y + 1 ) + ( y + 1 ) ]

= ( y - 1 )( 2x - 1 )( y + 1 )( 2x + 1 )

9 tháng 10 2020

a) \(36-4a^2+20ab-25b^2\)

\(=36-\left(4a^2-20ab+25b^2\right)\)

\(=36-\left(2a-5b\right)^2\)

\(=\left(6-2a+5b\right)\left(6+2a-5b\right)\)

b) \(\left(xy+4\right)^2-4\left(x+y\right)^2\)

\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)

\(=\left[x\left(y-2\right)-2\left(y-2\right)\right]\left[x\left(y+2\right)+2\left(y+2\right)\right]\)

\(=\left(x+2\right)\left(x-2\right)\left(y+2\right)\left(y-2\right)\)

c) \(x^2+y^2-x^2y^2+xy-x-y\)

\(=-\left(x^2y^2-x^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)

\(=-x^2\left(y-1\right)\left(y+1\right)+y\left(y-1\right)+x\left(y-1\right)\)

\(=\left(y-1\right)\left(-x^2y-x^2+y+x\right)\)

\(=\left(1-y\right)\left[\left(x^2y-y\right)+\left(x^2-x\right)\right]\)

\(=\left(1-y\right)\left(x-1\right)\left(xy+y+x\right)\)