K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2021

\(361\left(n^3+5n+1\right)=85\left(n^4+6n^2+n+5\right)\Rightarrow361n^3+1805n+361\)\(=85n^4+510n^2+85n+425\Rightarrow361n^3=85n^4+510n^2+1720n+64\)

3 tháng 1 2022

lolang

Không ai bt làm::(

 

4 tháng 1 2022

Ngồi hóng hóng

30 tháng 12 2021

\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)

Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)

Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)

\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)

Vậy A là hợp số với \(n>1\)

Vậy \(n=1\)

30 tháng 12 2021

\(3,\)

Đặt \(A=n^4+n^3+1\)

\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)

Vậy \(n=2\)

31 tháng 12 2017

đềbài sai hay sao vậy bạn, nếu n=1 => ..=2 chia hết cho 25 ???

31 tháng 12 2015

Ta có

4n-5 chia hết cho 13

=>4n-5=13k(k thuôc Z)

=>4n=13k+5

<=>\(n=\frac{13k+5}{4}\)

b

Vì 5n+1 chia hết cho 17

=>\(5n+1=7q\left(q\in Z\right)<=>5n=7q-1\)

<=>\(n=\frac{7q-1}{5}\)

c

Làm tương tự nha Lắc

Còn nhớ tui là ai nữa ko Lắc???Tick nha sanjji.

31 tháng 12 2015

Tìm x, biết

( 2x-5) chia hết cho ( x-1)

x+2 là ước của   x^2 +8

Giúp tui đi!!!!

12 tháng 6 2017

Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )

12 tháng 6 2017

\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)

\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)

\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)