Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+3^4+...+3^{50}\)
\(\Rightarrow3B=3^2+3^3+3^4+3^5+...+3^{51}\)
\(\Rightarrow2B=3^{51}-3\)
\(\Rightarrow B=\frac{3^{51}-3}{2}\)
\(C=4+4^2+4^3+4^4+...+4^{2018}\)
\(\Rightarrow4C=4^2+4^3+4^4+4^5+...+4^{2019}\)
\(\Rightarrow3C=4^{2019}-4\)
\(\Rightarrow C=\frac{4^{2019}-4}{3}\)
\(B=3+3^2+3^3+...+3^{50}\)
\(\Rightarrow3B=3^2+3^3+3^4+....+3^{51}\)
\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{51}\right)-\left(3+3^2+...+3^{50}\right)\)
\(\Rightarrow2B=3^{51}-3\)
\(\Rightarrow B=\frac{3^{51}-3}{2}\)
\(C=4+4^2+4^3+...+4^{2018}\)
\(\Rightarrow4C=4^2+4^3+4^4+....+4^{2019}\)
\(\Rightarrow4C-C=\left(4^2+4^3+4^4+...+4^{2019}\right)-\left(4+4^2+4^3+...+4^{2018}\right)\)
\(\Rightarrow3C=4^{2019}-4\)
\(\Rightarrow C=\frac{4^{2019}-4}{3}\)
\(B=-3\left(\dfrac{1}{4}-\dfrac{1}{4^2}+\dfrac{1}{4^3}-\dfrac{1}{4^4}+...-\dfrac{1}{4^{100}}\right)\)
Đặt \(C=\dfrac{1}{4}-\dfrac{1}{4^2}+...-\dfrac{1}{4^{100}}\)
\(\Leftrightarrow C\cdot\dfrac{1}{4}=\dfrac{1}{4^2}-\dfrac{1}{4^3}+...-\dfrac{1}{4^{101}}\)
\(\Leftrightarrow C\cdot\dfrac{-3}{4}=\dfrac{-1}{4^{101}}-\dfrac{1}{4}=\dfrac{-1-4^{100}}{4^{101}}\)
\(\Leftrightarrow C=\dfrac{-4^{100}-1}{4^{101}}\cdot\dfrac{-4}{3}=\dfrac{4^{100}+1}{3\cdot4^{100}}\)
\(\Leftrightarrow B=\dfrac{-4^{100}-1}{4^{100}}\)
\(A=4+4^2+4^3+...+4^{19}+4^{20}\)
\(4A=4\cdot\left(4+4^2+4^3+...+4^{20}\right)\)
\(4A=4^2+4^3+...+4^{21}\)
\(4A-A=4^2+4^3+4^4+...+4^{21}-4-4^2-4^3-...-4^{20}\)
\(3A=4^{21}-4\)
\(A=\dfrac{4^{21}-4}{3}\)
____________
\(B=1+3+3^2+...+3^{99}\)
\(3B=3\cdot\left(1+3+3^2+....+3^{99}\right)\)
\(3B=3+3^2+3^3+....+3^{100}\)
\(3B-B=\left(3+3^2+3^3+....+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(2B=3^{100}-1\)
\(B=\dfrac{3^{100}-1}{2}\)
a\()\) 16/9 +3/5
=107/45
b\()\) 4/13--2/17
=51/221--26/221
=77/221
c\()\) -3/2+4/5
=-15/10+8/10
=-7/10
d\()\) 3/-4-1/4
=-1
e\()\) -1/5.5/7
=-1/7
f\()\) 7/8.64/49
=8/7
g\()\) 3/4.15/24
=15/32
\(3^4=3.3.3.3=81\)