Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3.3}{20.23}+\dfrac{3.3}{23.26}+...+\dfrac{3.3}{77.80}\)
\(=3\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+...+\dfrac{3}{77.80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=3.\dfrac{3}{80}=\dfrac{9}{80}< 1\left(đpcm\right)\)
Vậy...
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
ƯCLN(2^3*3^a;2^b*3^5)=2^2*3^5 nên b=2 và a<=5
BCNN(2^3*3^a;2^2*3^5)=2^3*3^6 nên a=6
Ta chứng mình: Với `n\in NN^(**)` ta có `X=1^2+2^2+...+n^2=(n(n+1)(2n+1))/6(**)`
Thật vậy:
- Với `n=1` thì `(**)` đúng.
- Giả sử `(**)` đúng với `n=k` hay `1^2+2^2+...+k^2=(k(k+1)(2k+1))/6`
Ta cần chứng minh `(**)` đúng với `n=k+1`
hay `1^2+2^2+...+k^2+(k+1)^2=((k+1)(k+2)(2k+3))/6`
`<=>(k(k+1)(2k+1))/6+(k+1)^2=((k+1)(k+2)(2k+3))/6`
`<=>(k(k+1)(2k+1)+6(k+1)^2)/6=((k+1)(k+2)(2k+3))/6`
`=>k(k+1)(2k+1)+6(k+1)^2=(k+1)(k+2)(2k+3)`
`<=>(k+1)[k(2k+1)+6(k+1)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)(2k^2+7k+6)=(k+1)(k+2)(2k+3)`
`<=>(k+1)[(2k^2+3k)+(4k+6)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)[k(2k+3)+2(2k+3)]=(k+1)(k+2)(2k+3)`
`<=>(k+1)(k+2)(2k+3)=(k+1)(k+2)(2k+3)(` Hiển nhiên đúng `)`
Vậy theo nguyên lý quy nạp thì`(**)` được c/m.
------------
Áp dụng `(**)` ta có
`1.1+2.2+3.3+...+98.98`
`=1^2+2^2+3^2+...+98^2`
`=(98(98+1)(2.98+1))/6`
`=318549`
`=
DE LA GI BAN
264252