Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
2) \(\left(x-2\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-15\end{matrix}\right.\)
3) \(\left(7-x\right)\left(x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-x=0\\x+19=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-19\end{matrix}\right.\)
4) \(-5< x< 1\)
\(\Rightarrow x\in\left\{-1;-3;-2;-1;0\right\}\)
5) \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x-3>0\\x-5< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>3\\x< 5\end{matrix}\right.\)
\(\Rightarrow3< x< 5\)
6) \(2x^2-3=29\)
\(\Rightarrow2x^2=29+3\)
\(\Rightarrow2x^2=32\)
\(\Rightarrow x^2=\dfrac{32}{2}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
7) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x+7=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\)
\(\Rightarrow x=\dfrac{18}{-6}\)
\(\Rightarrow x=-3\)
8) \(46-\left(x-11\right)=-48\)
\(\Rightarrow x-11=48+46\)
\(\Rightarrow x-11=94\)
\(\Rightarrow x=94+11\)
\(\Rightarrow x=105\)
1: (x-2)(x+4)=0
=>x-2=0 hoặc x+4=0
=>x=2 hoặc x=-4
2: (x-2)(x+15)=0
=>x-2=0 hoặc x+15=0
=>x=2 hoặc x=-15
3: (7-x)(x+19)=0
=>7-x=0 hoặc x+19=0
=>x=7 hoặc x=-19
4: -5<x<1
=>\(x\in\left\{-4;-3;-2;-1;0\right\}\)
5: (x-3)(x-5)<0
=>x-3>0 và x-5<0
=>3<x<5
6: 2x^2-3=29
=>2x^2=32
=>x^2=16
=>x=4 hoặc x=-4
7: -6x-(-7)=25
=>-6x=25-7=18
=>x=-3
8: 46-(x-11)=-48
=>x-11=46+48=94
=>x=94+11=105
Giải:7
\(1:x+2:x+3:x+...+100:x=101\)
\(\left(1+2+3+...+100\right):x=101\)
Số số hạng \(\left(1+2+3+...+100\right)\) :
\(\left(100-1\right):1+1=100\)
Tổng dãy \(\left(1+2+3+...+100\right)\) :
\(\left(1+100\right).100:2=5050\)
\(\Rightarrow5050:x=101\)
\(x=5050:101\)
\(x=50\)
Chúc em học tốt!
????????????????????????????????????????????????????????????????????????????????????????????????
Ta có: (x+1)+(x+2)+(x+3)
=x+1+x+2+x+3
=(x+x+x)+(1+2+3)
=3x+6
=3(x+2) \(⋮3\)( đpcm)
( 3 \(\times\) \(x\) - 24) \(\times\) 73 = 2\(\times\) 74
(3 \(\times\) \(x\) - 16) \(\times\) 73 = 4802
3\(\times\) \(x\) - 16 = 4802: 73
3\(\times\) \(x\) = \(\dfrac{4802}{73}\) + 16
3\(\times\) \(x\) = \(\dfrac{5970}{73}\)
\(x\) = \(\dfrac{5970}{73}\) : 3
\(x\) = \(\dfrac{1990}{73}\)
\(\left(3x-2^4\right)\cdot73=2\cdot7^4\\ \Leftrightarrow3x-2^4=\dfrac{4802}{73}\\ \Leftrightarrow3x=\dfrac{5970}{73}\\ \Leftrightarrow x=\dfrac{1990}{73}\)
Vậy x = \(\dfrac{1990}{73}\)
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{5}\right)...\left(1-\dfrac{1}{2003}\right).\left(1-\dfrac{1}{2004}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{2002}{2003}.\dfrac{2003}{2004}\)
\(A=\dfrac{1}{2004}\)