K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

\(\left\{315-\left[\left(60-41\right)^2-361\right]\cdot4217\right\}+2885\)    

\(=\left[315-\left(19^2-361\right)\cdot4217\right]+2885\)    

\(=\left[315-\left(361-361\right)\cdot4217\right]+2885\)   

\(=\left(315-0\cdot4217\right)+2885\)    

\(=\left(315-0\right)+2885\)   

\(=315+2885\)    

\(=3200\)

17 tháng 10 2020

\(\left\{315-[\left(60-41\right)^2-361]\times4217\right\}+2885\)

\(=\left\{315-[19^2-361]\times4217\right\}+2885\)

\(=\left\{315-0\times4217\right\}+2885\)

\(=315+2885\)

\(=3200\)

a: \(3\sqrt{200}=3\cdot10\sqrt{2}=30\sqrt{2}\)

b: \(-5\sqrt{50a^2b^2}=-5\cdot5\sqrt{2a^2b^2}\)

\(=-25\cdot\left|ab\right|\cdot\sqrt{5}\)

c: \(-\sqrt{75a^2b^3}\)

\(=-\sqrt{25a^2b^2\cdot3b}=-5\left|ab\right|\cdot\sqrt{3b}\)

2 tháng 10 2021

a. x2 - 11 = \(x^2-\left(\sqrt{11}\right)^2=\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)\)

b. x2 - 5 = \(x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

c. x2 - 7 = \(x^2-\left(\sqrt{7}\right)^2=\left(x+\sqrt{7}\right)\left(x-\sqrt{7}\right)\)

2 tháng 10 2021

Em cảm ơn ạ<33

 

14 tháng 3 2021

Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!

Ta có: x2 - 4x + 5m - 2 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0

\(\Leftrightarrow\) (x - 2)2 = 6 - 5m

\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)

Ta có: x12 . x2 + x1 . x22 = 12

\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2\(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12

\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12

\(\Leftrightarrow\) (-2 + 5m).4 = 12

\(\Leftrightarrow\) -2 + 5m = 3

\(\Leftrightarrow\) m = 1

Vậy ...

Chúc bn học tốt!

14 tháng 3 2021

thanks hihi

NV
23 tháng 4 2022

Phản chứng: giả sử trong 361 số đó, không có 2 số nào bằng nhau

Không mất tính tổng quát, giả sử:

\(0< a_1< a_2< ...< a_{361}\)

\(\Rightarrow\left\{{}\begin{matrix}a_1\ge1\\a_2\ge2\\...\\a_{361}\ge361\end{matrix}\right.\)

Đặt \(S=\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{361}}}\)

\(\Rightarrow S\le\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{361}}\)

\(\Rightarrow S\le1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{361}}\right)\)

\(\Rightarrow S< 1+2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{360}+\sqrt{361}}\right)\)

\(\Rightarrow S< 1+2\left(\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}+\sqrt{1}\right)\left(\sqrt{2}-\sqrt{1}\right)}+...+\dfrac{\sqrt{361}-\sqrt{360}}{\left(\sqrt{361}+\sqrt{360}\right)\left(\sqrt{361}-\sqrt{360}\right)}\right)\)

\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{361}-\sqrt{360}\right)\)

\(\Rightarrow S< 1+2\left(\sqrt{361}-1\right)=37\)

Trái với giả thiết \(S=37\)

\(\Rightarrow\) Điều giả sử là sai hau trong 361 số tự nhiên đó tồn tại ít nhất 2 số bằng nhau

23 tháng 4 2022

em cảm ơn nhiều ạ

30 tháng 1 2019

\(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{5}{y}=\dfrac{2}{3}\\\dfrac{5}{x}+\dfrac{4}{y}=\dfrac{41}{60}\end{matrix}\right.\left(I\right)\)

Đặt \(:\left\{{}\begin{matrix}t=\dfrac{1}{x}\\u=\dfrac{1}{y}\end{matrix}\right.\)

\(\left(I\right):\left\{{}\begin{matrix}4t+5u=\dfrac{2}{3}\\5t+4u=\dfrac{41}{60}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20t+25u=\dfrac{10}{3}\\20t+16u=\dfrac{41}{15}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9u=\dfrac{3}{5}\\20t+16u=\dfrac{41}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{15}\\t=\dfrac{1}{12}\end{matrix}\right.\)

Với \(:\left\{{}\begin{matrix}t=\dfrac{1}{12}\\u=\dfrac{1}{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=15\end{matrix}\right.\)

Vậy nghiệm hệ phương trình là \(\left(12;15\right)\)

21 tháng 9 2020

Bài 2 : 

a) \(A=\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+2\sqrt{7}+1}-\sqrt{7}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{7}=\left|\sqrt{7}+1\right|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

b) \(B=\sqrt{7+4\sqrt{3}}-2\sqrt{3}=\sqrt{4+4\sqrt{3}+3}-2\sqrt{3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-2\sqrt{3}=\left|2+\sqrt{3}\right|-2\sqrt{3}\)

\(=2+\sqrt{3}-2\sqrt{3}=2-\sqrt{3}\)

c) \(C=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\)

\(=\sqrt{13-2\sqrt{13}+1}+\sqrt{13+2\sqrt{13}+1}\)

\(=\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\)

\(=\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

d) \(D=\sqrt{22-2\sqrt{21}}+\sqrt{22+2\sqrt{21}}\)

\(=\sqrt{21-2\sqrt{21}+1}+\sqrt{21+2\sqrt{21}+1}\)

\(=\sqrt{\left(\sqrt{21}-1\right)^2}+\sqrt{\left(\sqrt{21}+1\right)^2}\)

\(=\left|\sqrt{21}-1\right|+\left|\sqrt{21}+1\right|\)

\(=\sqrt{21}-1+\sqrt{21}+1=2\sqrt{21}\)

21 tháng 9 2020

bạn j ơi bạn giải đúng k vậy

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm