Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}.\)
\(4S-S=3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}-\frac{1}{4}-\frac{2}{4^2}-...-\frac{2018}{4^{2018}}-\frac{2019}{4^{2019}}=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2018}}-\frac{2019}{4^{2019}}\)
\(3S< A=1+\frac{1}{4}+...+\frac{1}{4^{2018}}\)\(\Rightarrow3A=4A-A=4-\frac{1}{4^{2018}}< 4\)(sau khi rút gọn)
\(\Rightarrow3.3S< 4\Rightarrow9S< 4\)
\(\Rightarrow S< \frac{4}{9}< \frac{1}{2}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)
=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)
=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)
còn lại tự giải nhé
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
a, \(S=1+3+3^2+...+3^{2019}\)
\(3S=3+3^2+3^3+...+3^{2020}\)
\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)
\(2S=3^{2020}-1\)
\(S=\frac{3^{2020}-1}{2}\)
b, \(S=1+3+3^2+3^3+...+3^{2019}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\)
\(S=4+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)
\(S=4\cdot1+3^2\cdot4+...+3^{2018}\cdot4\)
\(S=4\left(1+3^2+...+3^{2018}\right)⋮4\)
\(S=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{2019}{3^{2019}}\)
\(3S=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{2019}{3^{2018}}\)
\(\Rightarrow3S-S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2018}}-\dfrac{2019}{3^{2019}}\)
\(\Rightarrow2S=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2018}}-\dfrac{2019}{3^{2019}}\)
\(\Rightarrow6S=3+1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2017}}-\dfrac{2019}{3^{2018}}\)
\(\Rightarrow4S=3-\dfrac{2020}{3^{2018}}+\dfrac{2019}{3^{2019}}=3-\dfrac{1347}{3^{2018}}< 3\)
\(\Rightarrow S< \dfrac{3}{4}\)
cậu thi hsg toán à