K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6

Gọi số xe của đội thứ nhất, thứ hai, thứ ba lần lượt là x,y,z (xe)

Điều kiện: \(x,y,z\inℕ^∗\)

Ta có:

+) Vì đội thứ nhất nhiều hơn đội thứ ba là 10 xe nên:

\(x-z=10\)

+) Vì cùng một lượng hàng hóa thì số xe chở tỉ lệ nghịch với thời gian chở nên:

\(2x=2,5y=3z\Rightarrow\dfrac{2x}{30}=\dfrac{2,5y}{30}=\dfrac{3z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau kết hợp \(x-z=10\) được:

\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{10}=\dfrac{x-z}{15-10}=\dfrac{10}{5}=2\)

Do đó:

\(\left\{{}\begin{matrix}x=15\cdot2=30\\y=12\cdot2=24\\z=10\cdot2=20\end{matrix}\right.\) (thỏa mãn điều kiện)

Vậy...