K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Gọi x,y,z là số tiền thưởng của ba công nhân lần lượt  (x,y,z > 0)

Gỉa sử x,y,z tỉ lệ thuận với 3;4;7  ta có:  x 3 = y 5 = z 7  và x+ y = 5,6

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

Tổng số tiền thưởng của ba người là 10,5 triệu

Đáp án cần chọn là C

2 tháng 3 2020

a) Gọi số tiền thưởng của ba người lần lượt là a,b,c(triệu đồng)

Theo điều kiện của bài ta có : \(a:b:c=3:5:7\)hoặc \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và a + b = 5,6

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{3+5}=\frac{5,6}{8}=0,7\)

=> \(\hept{\begin{cases}\frac{a}{3}=0,7\\\frac{b}{5}=0,7\\\frac{c}{7}=0,7\end{cases}}\Rightarrow\hept{\begin{cases}a=2,1\\b=3,5\\c=4,9\end{cases}}\)

=> \(a+b+c=2,1+3,5+4,9=10,5\)

Vậy tổng số tiền của ba người được thưởng là 10,5 triệu đồng

Còn câu b bạn tự làm đi nhé

21 tháng 9 2016

Giải:

Gọi số tiền thưởng của 3 người lần lượt là a, b, c ( a,b,c thuộc N* )

Ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và \(a+b=5600000\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{3+5}=\frac{5600000}{8}=700000\)

+) \(\frac{a}{3}=700000\Rightarrow a=2100000\)

+) \(\frac{b}{5}=700000\Rightarrow b=3500000\)

+) \(\frac{c}{7}=700000\Rightarrow c=4900000\)

Vậy người thứ nhất được 2100000 đồng ( 2.1 triệu )

        người thứ 2 được 3500000 đồng ( 3.5 triệu )

        người thứ 3 được 4900000 đồng ( 4.9 triệu )

21 tháng 9 2016

Gọi tiền thưởng của 3 người lần lượt là a,b,c (triệu)(a,b,c>0).

Tổng số tiền thưởng của người 1 và người 2 là 5,6 triệu đồng nên a+b=5,6
Số tiền thưởng tỉ lệ thuận với năng suất lao động nên: 

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b}{3+5}=\frac{5,6}{8}=0,7\)

\(\Rightarrow a=0,7.3=2,1\) ;\(b=0,7.5=3.5\) ;\(c=0,7.7\) =4,9

Do đó tổng tiền thưởng của 3ng là:2,1+3,5+4,9=10,5(tr).

17 tháng 11 2017
có phải là 9,7 triệu đồng ko ạ
6 tháng 12 2021

undefined

6 tháng 12 2021

Mk rảnh nên gõ trong Wold nên hơi lâu xíu , thông cảm!

22 tháng 11 2015

 Gọi tiền thưởng của 3 người lần lượt là a,b,c (triệu)(a,b,c>0).
Tổng số tiền thưởng của ng1 và ng2 là 5,6 triệu đồng nên a+b=5,6
Số tiền thưởng tỉ lệ thuận với năng suất lao động nên: a3=b5=c7=a+b3+5=5,68=0,7.
⇒a=0,7.3=2,1(tr);b=0,7.5=3,5(tr);c=0,7.7=4,9(tr).
Do đó tổng tiền thưởng của 3ng là:2,1+3,5+4,9=10,5(tr).

Nếu đúng thì tích mình nha bạn 

9 tháng 1 2017

mk thử 10.5 tr rồi mà k đúng bạn ak

4 tháng 11 2015

gọi năng suất của 3 công nhân đó là x,y,z ta có

x/3=y/5=z/7 và x+y=5,6 (triệu)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/3=y/5=z/7=x+y/3+5=5,6/8=0,7

với x/3=0,7=>x=2,1(triệu)

với y/5=0,7=>y=3,5(triệu)

với z/7=0.7=>z=4.9(triệu)

KL............

6 tháng 12 2017

Gọi số tiền của 3 người thợ lần lượt là x,y,z

Vì số tiền thưởng và năng suất lao động là 2 đại lượng tỉ lệ thuận nên

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{z}{7}=\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z-x}{7-3}=\dfrac{200000}{4}=50000\)

\(\Rightarrow x=50000.3=150000\)

\(y=50000.5=250000\)

\(z=50000.7=350000\)

Số tiền thưởng của 3 người thợ lần lượt là 150000,250000,350000 ( đồng )

4 tháng 7 2017

1.Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c (a<b<c;a,b,c>0

a,Theo đề bài ta có:\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{45}{15}=3\)

\(\dfrac{a}{3}=3=>a=9\left(cm\right)\)

\(\dfrac{b}{5}=3=>b=15\left(cm\right)\)

\(\dfrac{c}{7}=3=>c=21\left(cm\right)\)

Vậy độ dài 3 cạnh của tam giác là: 9 cm; 15 cm ; 21 cm

b,Theo đề bài ta có:\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c+a-b}{7+3-5}=\dfrac{20}{5}=4\)

\(\dfrac{a}{3}=4=>a=12\left(cm\right)\)

\(\dfrac{b}{5}=4=>b=20\left(cm\right)\)\(\dfrac{c}{7}=4=>c=28\left(cm\right)\)

Vậy độ dài 3 cạnh tam giác là:12 cm; 20 cm ; 28 cm

2.Tương tự như vậy bn nhé!ok