K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

\(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\Leftrightarrow a+\sqrt{1+a^2}=b+\sqrt{1+b^2}\)

Bình phương cả 2 vế: \(2a\sqrt{1+a^2}=2b\sqrt{1+b^2}\)

Tiếp tục bình phương: \(a^2+a^4=b^2+b^4\)

\(\Leftrightarrow a^2-b^2+\left(b^2-a^2\right)\left(a^2+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(1-a^2-b^2\right)=0\)

Đến đây ta có: \(\orbr{\begin{cases}a=b\\a^2+b^2=1\end{cases}}\)

Nếu a=b sẽ có vô số a,b TMDK nên đề bài nên có thêm điều kiện a,b phân biệt

14 tháng 1 2020

\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)

hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

NV
12 tháng 10 2019

\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)

\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\) (bình phương 2 vế và rút gọn)

\(\Rightarrow a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\)

\(\Rightarrow a^4-b^4-\left(a^2-b^2\right)=0\)

\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a^2-b^2\right)=0\)

\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a^2+b^2=1\\a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a^2+b^2=1\\a^2+b^2=2a^2=2b^2\end{matrix}\right.\)

Có 2 trường hợp xảy ra, chắc bạn ghi thiếu điều kiện \(a\ne b\) để loại trường hợp dưới ko ra số cụ thể.

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)

\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)

Rồi tương tự các kiểu:v

Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))

Không phải dùng tới Cauchy-Schwarz:D

29 tháng 12 2019

Áp dụng bđt AM-GM ta có: 

\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)

\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)

\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)

Cộng từng vế các đẳng thức trên ta được:

\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)

\(\Rightarrow N\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

29 tháng 12 2019

 x, y, z \(\ge\)0 là đúng đấy

và bạn có thể giải bằng BĐT Cauchy đc ko