K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2021

Bài 1:

\(a,=6x^2+6x\\ b,=15x^3-10x^2+5x\\ c,=6x^3+12x^2\\ d,=15x^4+20x^3-5x^2\\ e,=2x^2+3x-2x-3=2x^2+x-3\\ f,=3x^2-5x+6x-10=3x^2+x-10\)

Bài 2:

\(a,\Leftrightarrow3x^2+3x-3x^2=6\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow6x^2+3x-6x^2+9x-2x-3=10\\ \Leftrightarrow10x=13\Leftrightarrow x=\dfrac{13}{10}\)

11 tháng 11 2021

\(a,=4x^2+3xy-y^2+4xy-4x^2=7xy-y^2\\ b,=x^2-9-x^3+3x+x^2-3=-x^3+2x^2+3x-12\\ c,=-2x^2+12x-18+5x^2+4x-1=3x^2+16x-19\\ d,=8x^3+1-3x^3+6x^2=5x^3+6x^2+1\\ e,=\left(3x^2+4x+15x+20\right):\left(3x+4\right)\\ =\left(3x+4\right)\left(x+5\right):\left(3x+4\right)\\ =x+5\\ f,=\left(x^3+4x^2-3x+3x^2+12x-9+3x+3\right):\left(x^2+4x-3\right)\\ =\left[\left(x^2+4x-3\right)\left(x+3\right)+3x+3\right]:\left(x^2+4x-3\right)\\ =x+3\left(dư.3x+3\right)\)

a: Ta có: \(40x^4+5x=0\)

\(\Leftrightarrow5x\left(8x^3+1\right)=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b: Ta có: \(8x^2-2x-1=0\)

\(\Leftrightarrow8x^2-4x+2x-1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

16 tháng 9 2021

1. 2x(3x2 - 5x + 3) = 6x3 - 10x2 + 6x

2. \(-\dfrac{1}{2}x^2\left(2x^3-4x+3\right)=-x^5+2x^3+\dfrac{-3}{2}x^2\)

3. -2x(x2 + 5x - 3) = -2x3 - 10x2 + 6x

4. x(3x2 - 2x + 5) = 3x3 - 2x2 + 5x

5. 3xy2(2x - 4y + 3xy) = 6x2y2 - 12xy3 = 9x2y3

1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)

\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)

\(\Leftrightarrow-24x=11+1+25=37\)

hay \(x=-\dfrac{37}{24}\)

 

5) Ta có: \(3x^2-5x-8=0\)

\(\Leftrightarrow3x^2+3x-8x-8=0\)

\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)

8) Ta có: \(\left|x-5\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Bài 1: Thực hiện phép tính:          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     e) (x3 – 3x2 + x – 3) : (x – 3)Bài 2: Tìm x, biết:a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )Bài 3:...
Đọc tiếp

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                              

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

1
22 tháng 8 2022

a) 2x.(3x2 – 5x + 3)        

=2x3-10x2+6x                                                                       

b(-2x-1).( x2 + 5x – 3 ) – (x-1)3

=-2x- 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1

= -3x3 - 8x2 - 2x + 4

   d) (6x5y2 – 9x4y+ 15x3y4) : 3x3y

=2x2-3xy+5y2

 

 

 

AH
Akai Haruma
Giáo viên
17 tháng 4 2023

Lời giải:

a.

PT $\Leftrightarrow 3x^2+\frac{x}{2}-3x^2+3x+2=0$
$\Leftrightarrow \frac{7}{2}x+2=0$
$\Leftrightarrow \frac{7}{2}x=-2$
$\Leftrightarrow x=-2: \frac{7}{2}=\frac{-4}{7}$
b.

PT $\Leftrightarrow 5x^2-3-5x^2-6x=0$

$\Leftrightarrow -3-6x=0$

$\Leftrightarrow 6x=-3$

$\Leftrightarrow x=\frac{-3}{6}=\frac{-1}{2}$

19 tháng 2 2019

Bài 1: 

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^3-10x^2-6x\)

Bài 4: 

a: =>3x+10-2x=0

=>x=-10

c: =>3x2-3x2+6x=36

=>6x=36

hay x=6

4 tháng 1 2022

Bài 1:

\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)

Bài 4:

\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)

Bài 1:

\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)