Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)
A. 2.\(|3x+1|\)=\(\frac{3}{4}\)-\(\frac{5}{8}\)
2.\(|3x+1|\)=1/8
\(|3x+1|\)=1/8:2
\(|3x+1|\)=1/16
TH1 : 3x+1=1/16
3x=1/16-1
3x=-15/16
x=-15/16:3
x=-5/16
a,\(\frac{3}{4}-2.\left|3x+1\right|=\frac{5}{8}\)
\(\Rightarrow2.\left|3x+1\right|=\frac{3}{4}-\frac{5}{8}=\frac{6}{8}-\frac{5}{8}=\frac{1}{8}\)
\(\Rightarrow\left|3x+1\right|=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}3x+1=\frac{1}{16}\\3x+1=\frac{-1}{16}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3x=\frac{1}{16}-1=\frac{-15}{16}\\3x=\frac{-1}{16}-1=\frac{-17}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{16}.\frac{1}{3}=\frac{-5}{16}\\x=\frac{-17}{16}.\frac{1}{3}=\frac{-17}{48}\end{cases}}\)
Vậy....
b,\(\left|3x+2\right|-\left|x-3\right|=\frac{7}{2}\left(1\right)\)
Ta có bảng xét dấu
x | \(\frac{-2}{3}\) 3 |
3x+2 | - 0 + | + |
x-3 | - | - 0 + |
Nếu x<\(\frac{-2}{3}\) thì \(\left|3x+2\right|-\left|x-3\right|\) \(=-3x-2-3+x\)
\(=-2x-5\)
Từ (1) \(\Rightarrow-2x-5=\frac{7}{2}\)
\(\Rightarrow-2x=\frac{7}{2}+5=\frac{17}{2}\)
\(\Rightarrow x=\frac{17}{2}\cdot\frac{-1}{2}=\frac{-17}{4}\)(thỏa mãn x<\(\frac{-2}{3}\)
Nếu \(\frac{-2}{3}\le x\le3\)thì \(\left|3x+2\right|-\left|x-3\right|=3x+2-\left(3-x\right)\)
\(=3x+2-3+x\)
\(=2x-1\)
Từ (1)\(\Rightarrow\)\(2x-1=\frac{7}{2}\)
\(\Rightarrow2x=\frac{9}{2}\)
\(\Rightarrow x=\frac{9}{4}\)(thỏa mãn......
Còn trưonwfg hợp cuối bạn tự làm nốt nhé
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
a,2x-3=x+1/2 b,4x-(x+1/2)=2x+(1/2-5) c,2/3-1/3(x-2/3)-1/2(2x+1)=5
2x-x =1/2+3 4x-x-1/2=2x+1/2-5 d,(x+1/2).(x-3/4)=0
x=7/2 4x-x-2x =1/2-5+1/2 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
x=-4
e,(2x-1)(3x+1/5)=0
\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)
f, 4x2-2x=0
Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
Ta có :
\(\left(2x^2-3x+1\right)-\left(2x^2-3x+4\right)=0\)
\(\Leftrightarrow2x^2-3x+1-2x^2+3x-4=0\)
\(\Leftrightarrow-3=0\left(ktm\right)\)
\(\Leftrightarrow x\in\varnothing\)
a, \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b, \(\left(2x-4\right)\left(9-3x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}2x-4>0\\9-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}\Leftrightarrow2< x< 3}}\)
a. \(2x-3< 0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
b. \(\left(2x-4\right)\left(9-3x\right)>0\Leftrightarrow18x-6x-36+12x>0\Leftrightarrow24x>36\Leftrightarrow x>\frac{3}{2}\)
c. \(\frac{2}{3}x-\frac{3}{4}>0\Leftrightarrow\frac{2}{3}x>\frac{3}{4}\Leftrightarrow x>\frac{9}{8}\)
d. \(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-61}-\frac{17}{51}\right)\le0\)
\(\Leftrightarrow\frac{3}{4}-2x\le0\Leftrightarrow2x\le\frac{3}{4}\Leftrightarrow x\le\frac{3}{8}\)
e. \(\left(\frac{3}{2}x-4\right).\frac{5}{3}>\frac{15}{6}\Leftrightarrow\frac{3}{2}x-4>\frac{3}{2}\Leftrightarrow\frac{3}{2}x>\frac{11}{2}\Leftrightarrow x>\frac{11}{3}\)
a, |x^2 - 3x| = 0
=> x^2 - 3x = 0
=> x(x - 3) = 0
=> x = 0 hoặc x - 3 = 0
=> x = 0 hoặc x = 3
vậy_
\(\left|a^2-3a\right|=0\)
\(\Rightarrow a^2-3a=0\)
\(\Rightarrow a\left(a-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\a=3\end{cases}}\)
(2\(x\) + 3)2 + (3\(x\) - 2)4 =0
Vì:
(2\(x\) + 3)2 ≥ 0
(3\(x\) - 2)4 ≥ 0
Nên :
(2\(x\) + 3)2 + (3\(x\) - 2)4 = 0
⇔ \(\left\{{}\begin{matrix}2x+3=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\) \(\in\) \(\varnothing\)