Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x/5=2y/7=2z/3
=>x/5/3=y/7/2=z/3/2
=>x/10=y/21=z/9=k
=>x=10k; y=21k; z=9k
2x^2-y^2-z^2=-160
=>2*100k^2-441k^2-81k^2=-160
=>k^2=80/161
TH1: k=căn 80/161
\(x=10\sqrt{\dfrac{80}{161}};y=21\sqrt{\dfrac{80}{161}};z=9\sqrt{\dfrac{80}{161}}\)
TH2: \(k=-\sqrt{\dfrac{80}{161}}\)
=>\(x=-10\sqrt{\dfrac{80}{161}};y=-21\sqrt{\dfrac{80}{161}};z=-9\sqrt{\dfrac{80}{161}}\)
mik làm câu a) cho bn nhé.
x/5 = y/1 = z/-2=> x/5 = y/1 = 2z/-4
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
x/5 + y/1 - 2z/-4 = 160/10 = 16
Từ x/5 = 16 => x = 80
y/1 = 16 => y = 16
z/-2 = 16 => z = (-32)
Nhớ k mik nha
Ta có : \(\frac{x}{5}=y=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}\)
Lại có : -x - y + 2z = 160
=> -(x + y - 2z) = 160
=> x + y - 2z = -160
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}=\frac{x+y-2z}{5+1-\left(-4\right)}=\frac{-160}{10}=-16\)
=> x = -16.5 = -80 , y = -16 , z = -16.(-2) = 32
Đặt \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)
=> 4x = 12k , 3y = 24k , 2z = 10k
=> 4x + 3y - 2z = 12k + 24k - 10k
=> 52 = 26k
=> k = 2
Với k = 2 thì x = 3.2 = 6 , y = 8.2 = 16 , z= 5.2 = 10
8x = 5y => \(\frac{x}{5}=\frac{y}{8}\)
=> \(\frac{2x}{10}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{8-10}=\frac{-10}{-2}=5\)
=> x = 5.5 = 25,y = 5.8 = 40
a,
\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)
\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)
Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)
b,
\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)
Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)
c,
\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)
Vậy \(x=-12;y=-28\)
d,
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)
Vậy \(x=80;y=16;z=-32\)
e,
\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)
\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)
Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)
f,
\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)
\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)
Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)
g,
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)
\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)
Vậy \(x=6;y=16;z=10\)
Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé
a) Ta có :
\(x+y=29\)
\(\dfrac{2x}{5}=\dfrac{3y}{7}\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{42}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Leftrightarrow x=15\\\dfrac{y}{14}=1\Leftrightarrow x=14\end{matrix}\right.\)
Vậy .......
Câu a .Theo đề bài ta có :
\(\dfrac{2x}{5}=\dfrac{3y}{7}\) \(\Rightarrow\) \(\dfrac{2x}{30}=\dfrac{3y}{42}\) \(\Rightarrow\) \(\dfrac{x}{15}=\dfrac{y}{14}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{14}=\dfrac{x+y}{15+14}=\dfrac{29}{29}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{15}=1\Rightarrow x=15\\\dfrac{y}{14}=1\Rightarrow y=14\end{matrix}\right.\)
Câu b : Theo đề bài ta có :
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}=\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{-x}{-5}=\dfrac{y}{1}=\dfrac{2z}{-4}=\dfrac{-x-y+2z}{-5-1-4}=\dfrac{160}{-10}=-16\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-x}{-5}=-16\Rightarrow x=-80\\\dfrac{y}{1}=-16\Rightarrow y=-16\\\dfrac{2z}{-4}=-16\Rightarrow z=32\end{matrix}\right.\)
Câu c : Tương tự như câu a
Câu d : Theo đề bài ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x^2-y^2=-4\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x^2-y^2}{3^2-5^2}=\dfrac{-4}{-16}=\dfrac{1}{4}\)
\(\left[{}\begin{matrix}\dfrac{x}{3}=\dfrac{1}{4}\Rightarrow x=\dfrac{3}{4}\\\dfrac{y}{5}=\dfrac{1}{4}\Rightarrow y=\dfrac{5}{4}\end{matrix}\right.\)
Tìm x hả cậu?
2x+2x+2=160
=>2x(1+22)=160
=>2x.5=160
=>2x=160:5
=>2x=32
=>2x=25
=>x=5
Vậy x=5
\(2^x+2^{x+2}=160\)
\(2^x+2^x\cdot4=160\)
\(2^x\cdot\left(1+4\right)=160\)
\(2^x=160:5=32\)
\(2^x=2^5\)
\(x=5\)