K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

`(2x-5)(x+7)=x(x+7)`

`<=>(2x-5)(x+7)-x(x+7)=0`

`<=>(x+7)(2x-5-1)=0`

`<=>(x+7)(2x-6)=0`

TH1: `x+7=0<=>x=-7`

TH2: `2x-6=0<=>2x=6<=>x=6/2=3`

30 tháng 7 2017

m=\(\sqrt{2x-5}\)=>\(x=\dfrac{m^2+5}{2}\)

\(\sqrt{\dfrac{m^2+5}{2}+2-3m}+\sqrt{\dfrac{m^2+5}{2}-2+m}=2\sqrt{2}< =>\sqrt{\dfrac{m^2+5+4-6m}{2}}+\sqrt{\dfrac{m^2+5-4+2m}{2}}=2\sqrt{2}< =>\left(m+1\right)\left(\dfrac{\sqrt{8-8m}+1}{\sqrt{2}}\right)=2\sqrt{2}< =>\left(m+1\right)\left(\sqrt{8-8m}+1\right)=2\)bình 2 vế lên

30 tháng 7 2017

"bình 2 vế lên" dòng này cuối cùng không biết thằng nào viết cái web này mà gán biểu thức thành ra thế

12 tháng 8 2018

\(\dfrac{x^2-3xy+y^2}{x+y+2}=\dfrac{\left(3+\sqrt{5}\right)^2+3\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(3-\sqrt{5}\right)^2}{3+\sqrt{5}+3-\sqrt{5}+2}=\dfrac{9+2\cdot3\sqrt{5}+5+3\left(9-5\right)+9-2\cdot3\cdot\sqrt{5}+5}{8}=\dfrac{40}{8}=5\)

11 tháng 6 2019

#)Thắc mắc ?

Bạn ơi ! chỗ kia là \(\sqrt{x}-7hay\sqrt{x+7}\)thế ???????????????

11 tháng 6 2019

#)Giải :

\(5\sqrt{x-1}-\sqrt{x-7}=3x-4\)

ĐKXĐ : \(x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\ge0\\\sqrt{x+7=b>0}\end{cases}\Rightarrow3x-4}=\frac{25a^2-b^2}{8}\)

Phương trình trở thành : 

\(5a-b=\frac{25a^2-b^2}{8}\Leftrightarrow\left(5a-b\right)\left(5a+b\right)=8\left(5a-b\right)\)

 \(\Leftrightarrow\orbr{\begin{cases}5a-b=0\\5a+b=8\end{cases}\Leftrightarrow\orbr{\begin{cases}5\sqrt{x-1}=\sqrt{x+7}\\5\sqrt{x-1}+\sqrt{x+7}=8\end{cases}}}\)

\(TH1:5\sqrt{x+1}=\sqrt{x+7}\Leftrightarrow25\left(x-1\right)=x+7\Rightarrow x=\frac{4}{3}\)

\(TH2:5\sqrt{x-1}+\sqrt{x+7}=8\)

\(\Leftrightarrow5\sqrt{x-1}-5+\sqrt{x+7}-3=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+1}+\frac{x-2}{\sqrt{x-7}+3}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{x-1}+1}+\frac{1}{\sqrt{x-7}+3}\right)=0\)

\(\Rightarrow x=2\)

8 tháng 10 2017

ĐKXĐ: \(x\ge0\) Phương trình trên tương đương :

\(5\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)-2\left(x+\dfrac{1}{x}\right)-4=0\)

Đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t\ge0\right)\)\(\Rightarrow t^2=x+\dfrac{1}{x}+2\)

Vậy phương trình trở thành:

\(5t-2\left(t^2-2\right)-4=0\)\(\Leftrightarrow2t^2-5t=0\)\(\Leftrightarrow t\left(2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{5}{2}\end{matrix}\right.\)

*Với \(t=0\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=0\Leftrightarrow x=-1\left(loai\right)\)

*Với \(t=\dfrac{5}{2}\)\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=\dfrac{5}{2}\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)Vậy phương trình có hau nghiệm phân biệt \(\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

8 tháng 10 2017

Quy đồng rồi đặt ẩn \(\sqrt{x}=t\left(t\ge0\right)\) và giải pt bậc 4 như bình thường.

20 tháng 7 2017

Cau 1. X=2

Cau 2 x= 23

Cau/3.x=14

ban co the nao giai chi tiet cho minh dc ko

17 tháng 9 2019

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)(ĐK: \(\sqrt{2x-5}\ge0\Leftrightarrow x\ge\frac{5}{2}\)

\(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)+2\sqrt{2x-5}.3+9}+\sqrt{\left(2x-5\right)-2\sqrt{2x-5}+1}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

\(\Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)(vì \(\sqrt{2x-5}\ge0\) nên \(\sqrt{2x-5}+3\ge3>0\))

-TH: \(\sqrt{2x-5}-1\ge0\Leftrightarrow\sqrt{2x-5}\ge1\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

\(\Leftrightarrow2\sqrt{2x-5}=2\)

\(\Leftrightarrow\sqrt{2x-5}=1\)

\(\Leftrightarrow2x-5=1\)

\(\Leftrightarrow x=3\left(chọn\right)\)

-TH: \(\sqrt{2x-5}-1< 0\Leftrightarrow x< 3\) thì ta được phương trình:

\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)

\(\Leftrightarrow4=4\)(luôn đúng với mọi \(\frac{5}{2}\le x< 3\))

Vậy nghiệm của phương trình là \(\frac{5}{2}\le x\le3\)

17 tháng 9 2019

2,7612