Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6
1, => [ 462 + 642 - 2x ] : 2 = 531
1104 -2x = 1062
2x = 42
x =21
17x + 3. ( -16x – 37) = 2x + 43 - 4x
<=>17x-48x-111=-2x+43
<=>-29x=154
<=> \(x=-\frac{154}{29}\)
-3. (2x + 5) -16 < -4. (3 – 2x)
\(\Leftrightarrow-6x-31< -12+8x.\)
\(\Leftrightarrow-14x< 19\Rightarrow x< -\frac{19}{14}\)
\(\left(x-7\right)\left(x+2019\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+2019=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-2019\end{cases}}\)
\(9-25=\left(7-x\right)-\left(25+7\right)\)
\(\Leftrightarrow-16=7-x-25-7\)
\(\Leftrightarrow-x=-16+25\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
\(2\left(4x-2x\right)-7x=15\)
\(\Leftrightarrow4x-7x=15\)
\(\Leftrightarrow x=-5\)
a ) 9 - 25 = ( 7 - x ) - ( 25 + 7 )
9 - 25 = 7 - x - 25 - 7
9 - 25 - 7 + 25 + 7 = -x
9 = - x
=> x = -9
Vậy x = -9
b) 2 . ( 4x - 2x ) - 7x = 15
8x - 4x - 7x = 15
-3x = 15
x = 15 : ( - 3 )
x = -5
Vậy x = -5
c ) ( x - 7 ). ( x + 2019 ) = 0
=> x - 7 = 0 hoặc x + 2019 = 0
=> x = 7 hoặc x = - 2019
vậy x \(\in\){ 7 ; -2019 }
1) Câu này mình không hiểu quy luật cho lắm.
2) \(\left(2x.71\right)^3=125=5^3\)
\(\Rightarrow2x.71=5\Rightarrow2x=\frac{5}{71}\Rightarrow x=\frac{5}{71}:2=\frac{5}{142}\)
3)\(\left(4x-1\right)^2=25.9=225=15^2\)
\(\Rightarrow4x-1=15\Rightarrow4x=16\Rightarrow x=4\)
4)\(2^x+2^x+3=144\)
\(\Rightarrow2^x+2^x=141\)
Mà 2x+2x có kết quả là 1 số chẵn mà 141 là 1 số lẻ nên không có số x nào thỏa mãn.
5)\(3^{2x}+2=9^x+3\)
\(\Rightarrow3^{2x}=\left(3^2\right)^x+1\)
\(\Rightarrow3^{2x}=3^{2x}+1\)(không thỏa mãn)
Vậy không có số x nào thỏa mãn đề bài.
6) \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\)
\(A=\left(1+3+3^2\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(A=13+...+3^{1998}.\left(1+3+3^2\right)\)
\(A=13+...+3^{1998}.13\)
\(A=13.\left(1+...+3^{1998}\right)⋮13\Rightarrow A⋮13\)