Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 4x=9y=12z
Chia cả 3 cho 36 ta được
\(\frac{x}{9}=\frac{y}{4}=\frac{z}{3}\)(và x-y-z=10)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{9}=\frac{y}{4}=\frac{z}{3}=\frac{x-y-z}{9-4-3}=\frac{10}{2}=5\)
=>x=5.9=45
y=5.4=20
z=5.3=15
\(\frac{x}{-\frac{3}{5}}=\frac{-10}{21}\)
\(\Leftrightarrow21x=-10\cdot\frac{-3}{5}\)
\(\Leftrightarrow21x=6\Leftrightarrow x=\frac{2}{7}\)
\(\frac{x}{\frac{41}{3}}=-25\)
\(\Leftrightarrow x=-25\cdot\frac{41}{3}=\frac{-1025}{3}\)
3.Đề sao thế nhỉ???
1,
\(\frac{25}{12}+\left(\frac{-4}{12}\right)=\frac{7}{4}\)
\(\frac{-10}{8}+\frac{15}{4}=\frac{5}{2}\)
\(\frac{3}{8}+\frac{-14}{6}=\frac{-47}{24}\)
\(\frac{350}{150}+\left(\frac{-200}{360}\right)=\frac{16}{9}\)
\([\frac{5}{8}+\left(\frac{-3}{4}\right)]+\frac{15}{6}=\frac{-1}{8}+\frac{15}{6}=\frac{19}{8}\)
\(\frac{7}{3}+[\left(\frac{-5}{6}\right)+\left(\frac{-2}{3}\right)]=\frac{7}{3}+\left(\frac{-3}{2}\right)=\frac{5}{6}\)
đã hơn 3 năm rồi nhưng chưa có ai giải, mà 3 năm rồi bn cx ko cần nx.
`#040911`
`a,`
\(\left|2x-25\right|=41\)
\(\Rightarrow\left[{}\begin{matrix}2x-25=41\\2x-25=-41\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=41+25\\2x=-41+25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=66\\2x=-16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=66\div2\\x=-16\div2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=33\\x=-8\end{matrix}\right.\)
Vậy, `x \in { -8; 33 }`
`b,`
\(\dfrac{11}{3}-\left|\dfrac{5}{4}-x\right|=\dfrac{21}{4}\)
\(\Rightarrow\left|\dfrac{5}{4}-x\right|=\dfrac{11}{3}-\dfrac{21}{4}\)
\(\Rightarrow\left|\dfrac{5}{4}-x\right|=-\dfrac{19}{12}\left(\text{vô lý}\right)\)
Vậy, `x` không có giá trị nào thỏa mãn.
a) |2x - 25| = 41
2x - 25 = 41 và 2x - 25 = -41
*) 2x - 25 = 41
2x = 41 + 25
2x = 66
x = 66 : 2
x = 33
*) 2x - 25 = - 41
2x = -41 + 25
2x = -16
x = -16 : 2
x = -8
Vậy x = -8; x = 33
b) 11/3 - |5/4 - x| = 21/4
|5/4 - x| = 11/3 - 21/4
|5/4 - x| = -19/12 (vô lí vì |5/4 - x| ≥ 0 với mọi x ∈ R)
Vậy không tìm được x thỏa mãn yêu cầu đề bài