Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x.y = 28
=> 28 chia hết cho x,y
=> x,y thuộc Ư(28) = {1;2;4;7;14;28}
Ta có : x = 1 thì y = 28 (ngược lại)
x = 2 thì y = 14 (ngược lại)
x = 4 thì y = 7 ( ngược lại)
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh
Bài 2:
a) xy = -28
\(\Rightarrow\)x, y \(\in\)Ư(-28)
Ta có: Ư(-28) \(\in\){\(\pm\)1; \(\pm\)2; \(\pm\)4; \(\pm\)7; \(\pm\)14; \(\pm\)28}
Lập bảng:
x | -1 | 1 | -2 | 2 | -4 | 4 | -7 | 7 | -14 | 14 | -28 | 28 |
y | 1 | -1 | 2 | -2 | 4 | -4 | 7 | -7 | 14 | -14 | 1 | -1 |
b) (2x - 1)(4x + 2) = -42
Câu này bạn lập bảng như câu a
c) x + y +xy = 9
\(\Leftrightarrow\)x(y + 1) + (y + 1) = 10
\(\Leftrightarrow\)(x + 1)(y + 1) = 10
\(\Leftrightarrow\)x + 1 và y + 1 \(\in\)Ư(10)
Ta có: Ư(10) \(\in\){\(\pm\)1; \(\pm\)2; \(\pm\)5; \(\pm\)10}
Lập bảng:
x + 1 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
y + 1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -2 | 0 | -3 | 1 | -6 | 4 | -11 | 9 |
y | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
d) xy + 3x - 7y = 2
\(\Leftrightarrow\)x(y + 3) - 7y - 21 = -19
\(\Leftrightarrow\)x(y + 3) - 7(y + 3) = -19
\(\Leftrightarrow\)(x - 7)(x + 3) = -19
Tự lập bảng
e) xy - 2x - 3y = 5
\(\Leftrightarrow\)x(y - 2) - 3y + 6 = 11
\(\Leftrightarrow\)x( y - 2) - 3(y - 2) = 11
\(\Leftrightarrow\)(x - 3)(y - 2) = 11
Tự lập bảng
g) xy + 3x -2y = 11
\(\Leftrightarrow\)x(y + 3) - 2y - 6 = 5
\(\Leftrightarrow\)x(y + 3) - 2(y + 3) = 5
\(\Leftrightarrow\)(x - 2)(y + 3) = 5
Tự lập bảng
Bài 1 : Tìm x :
a) (x - 2) (7 - x) > 0
th1 :
x - 2 > 0 và 7 - x > 0
=> x > 2 và -x > -7
=> x > 2 và x < 7
=> 2 < x < 7
th2 :
x - 2 < 0 và 7 - x < 0
=> x < 2 và -x < -7
=> x < 2 và x > 7
=> vô lí
b) (x + 3) (x - 2) < 0
tương tự câu a
Bài 1:a) Ta có: \(1-3x⋮x-2\)
\(\Leftrightarrow-3x+1⋮x-2\)
\(\Leftrightarrow-3x+6-5⋮x-2\)
mà \(-3x+6⋮x-2\)
nên \(-5⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(-5\right)\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
Vậy: \(x\in\left\{3;1;7;-3\right\}\)
b) Ta có: \(3x+2⋮2x+1\)
\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow6x+3+1⋮2x+1\)
mà \(6x+3⋮2x+1\)
nên \(1⋮2x+1\)
\(\Leftrightarrow2x+1\inƯ\left(1\right)\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Vậy: \(x\in\left\{0;-1\right\}\)
Bài 1 :
a, Có : \(1-3x⋮x-2\)
\(\Rightarrow-3x+6-5⋮x-2\)
\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)
- Thấy -3 ( x - 2 ) chia hết cho x - 2
\(\Rightarrow-5⋮x-2\)
- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)
Vậy ...
b, Có : \(3x+2⋮2x+1\)
\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)
\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)
- Thấy 1,5 ( 2x +1 ) chia hết cho 2x+1
\(\Rightarrow1⋮2x+1\)
- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-1\right\}\)
Vậy ...
a) \(3xy-y+2x=1\)
\(\Leftrightarrow y=\dfrac{1-2x}{3x-1}\)
\(\Leftrightarrow3y=\dfrac{3-6x}{3x-1}=-2+\dfrac{1}{3x-1}=P\)
Để x;y thuộc N thì \(\left(3x-1\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(3x-1\right)\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3}\right\}\)
loại \(x=\dfrac{2}{3}\)
\(x=0\Rightarrow P=-3=3y\Rightarrow y=-1\left(-1\notin N\right)\)
loại x=0
Vậy không tồn tại x,y để \(3xy-y+2x=1\)
b)\(xy+4y+x=2\)
\(y=\dfrac{2-x}{x+4}=-1+\dfrac{6}{x+4}\)
Để x;y thuộc N thì \(\left(x+4\right)\inƯ\left(6\right)\)
\(\Leftrightarrow\left(x+4\right)\in\left\{-6;-3;-2-1;1;2;3;6\right\}\)
\(\Leftrightarrow x\in\left\{-10;-7;-6-5;-3;-2;-1;2\right\}\)
vì \(x\in N\) nên nhận x=2
x=2 \(\Rightarrow y=0\left(\in N\right)\)
nhận x=2
vậy vậy x=2 và y=0 thì \(xy+4y+x=2\)
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
\(x+x\cdot y+y=9\)
\(x\cdot\left(1+y\right)+\left(1+y\right)-1=9\)
\(\left(1+y\right)\cdot\left(x+1\right)=9-1\)
\(\left(1+y\right)\cdot\left(x+1\right)=8\)
vì x;y thuộc Z
suy ra \(1+y;x+1\)thuộc Z
suy ra \(1+y;x+1\)thuộc \(Ư\left(8\right)\)
Ta có bảng:
-2
Vậy \(\left(x;y\right)\)thuộc\(\left\{\left(0;7\right);\left(-2;-9\right);\left(1;3\right);\left(-3;-5\right);\left(3;1\right);\left(-5;-3\right);\left(7;0\right);\left(-9;-2\right)\right\}\)