K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:ĐK: $x> \frac{1}{3}$ hoặc $x<0$

Đặt $\sqrt{\frac{3x-1}{x}}=a(a> 0)$ thì BPT trở thành:

$2a\geq \frac{1}{a^2}+1$

$\Leftrightarrow 2a^3\geq a^2+1$

$\Leftrightarrow (a-1)(2a^2+a+1)\geq 0$

$\Leftrightarrow a\geq 1$

$\Leftrightarrow \sqrt{\frac{3x-1}{x}}\geq 1$

$\Leftrightarrow \frac{3x-1}{x}\geq 1(*)$

Nếu $x>\frac{1}{3}$ thì $(*)\Leftrightarrow 3x-1\geq x\Leftrightarrow x\geq \frac{1}{2}$

Nếu $x< 0$ thì $(*)\Leftrightarrow 3x-1\leq x\Leftrightarrow x\leq \frac{1}{2}\Rightarrow x< 0$

Vậy $x\geq \frac{1}{2}$ hoặc $x< 0$

 

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

6 tháng 4 2017

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

6 tháng 4 2017

b) ĐKXĐ: x>-4

\(x^2+3x+4=x+4\)

\(x^2+2x=0\)

\(x\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

NV
3 tháng 3 2021

Câu a bạn coi lại đề

b. ĐKXĐ: \(x\ge0;x\ne1\)

\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)

\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)

\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )

\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)

\(\Leftrightarrow20x^2+16x-1=0\)

\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Bạn xem lại đề câu a.

NV
26 tháng 2 2021

ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=a\ge0\)

BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)

Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)

Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)

\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)

\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)

\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)

\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)

\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)