Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
từ đề bài bạn sẽ có: (2n^2 + 3n + 1) + 2(2n + 3) chia hết cho 2n + 3. Vì 2(2n + 3) chia hết cho 2n + 3 => 2n^2 + 3n + 1 chia hết cho 2n + 3
Hay, bạn sẽ có 2n^2 + 2n + n + 1 = 2n(n +1) + (n+1) = (n+1)(2n +1) chia hết cho 2n + 3. đặt 2n + 3 = a (a khác 0)từ đó bạn sẽ có ((a -1)/2)(a -2) chia hết cho a. ở => (a-1)(a-2)/2 chia hết cho a.
bạn nhận thấy : (a-1)(a-2) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 => (a-1)(a-2)/2 là số nguyên (với a là 2 số tự nhiên liên tiếp)
xét 2 trường hợp: a = 1 và a = 2 là bạn sẽ tìm ra n
n + 11 chia hết cho n - 1
n - 1 + 12 chia hết cho n - 1
Vậy 12 chia hết cho n - 1
Vậy n thuộc {2;3;4;5;7;13}
7n+26 chia het cho n+3
=> 7n+26_-7*(n+3) chia het cho n+3
=>5 chia cho n+3
=>n+3 thuộc Ư(5)2
giai ra ta duoc
n=2,-2,-8,-4
a: \(\Leftrightarrow7n-7+7⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
b: \(\Leftrightarrow n+1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n^2-9+9⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{-2;-4;0;-6;6;-12\right\}\)
Ta có: n2 + 7n + 2 chia hết cho n + 4
=> n(n + 7) + 2 chia hết cho n + 4
\(\)n2+7n+2 chia hết cho n+4
<=>n2+4n+3n+2 chia hết cho n+4
<=>n(n+4)+3n+2 chia hết cho n+4
Vì n(n+4) luôn chia hết cho (n+4)
=>3n+2 chia hết cho n+4
=>3n+12-10 chia hết cho n+4
=>3(n+4)-10 chia hết chi n+4
Vì 3(n+4) luôn chia hết cho (n+4)
=>10 chia hết cho n+4
=>n+4 \(\in\) Ư(10)={-10;-5;-2;-1;1;2;5;10}
=>n \(\in\) {-14;-9;-6;-5;-3;-2;1;6}
Mà n là số tự nhiên
=>n \(\in\) {1;6}