Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}+...+\dfrac{1}{87\times89}\)
\(A=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{87}-\dfrac{1}{89}\)
\(A=\dfrac{1}{5}-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{89}\)
\(A=\dfrac{1}{5}-\dfrac{1}{89}\)
\(A=\dfrac{84}{445}\)
Vậy, `A=84/445.`
A = \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\)+\(\dfrac{1}{9\times11}\)+...+\(\dfrac{1}{87\times89}\)
A = \(\dfrac{1}{2}\) \(\times\)( \(\dfrac{2}{5\times7}\)+\(\dfrac{2}{7\times9}\)+\(\dfrac{2}{9\times11}\)+...+\(\dfrac{2}{87\times89}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{11}\) +...+ \(\dfrac{1}{87}\) - \(\dfrac{1}{89}\))
A = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{5}\) - \(\dfrac{1}{89}\))
A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{84}{445}\)
A = \(\dfrac{42}{445}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)
\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
A. = 1/2-1/3+1/3-1/4+1/4-1/5...+1/101-1/102=1/2-1/102=25/51.
B. =1/5-1/10+1/10-1/15+...+1/115-1/120=1/5-1/120=23/120.
C. = 1/5-1/7+1/7-1/9+1/9-1/11+...+1/997-1/999=1/5-1/999=994/4995.
Minh kiem tra bang may tinh roi do.
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{101\times102}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}\)
\(=1-\frac{1}{102}\)
\(=\frac{101}{102}\)
\(a,\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)
\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=13\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{7.9}\right)\)
\(=13\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(=13.\frac{2}{9}=\frac{26}{9}\)
\(b,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}=\frac{2017}{2018}\)
P/s :Dấu chấm là dấu nhân nha
A= 7/5*7 + 7/7*9 + ... + 7/53*55
A= 7/2*( 2/5*7 + 2/7*9 + ... + 2/53*55 )
A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )
A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )
A= 7/2*( 1/5-1/55 )
A= 7/2*2/11
A= 7/11
A= 7/11 > 1/2
Nên: A > 1/2
B= 1/3 + 1/15 + 1/35 + ... + 1/99
B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11
B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )
B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )
B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )
B= 2*( 1/1-1/11 )
B= 2*10/11
B= 20/11
B= 20/11 < 1/2
Nên: B < 1/2
A= 7/5*7 + 7/7*9 + ... + 7/53*55
A= 7/2*( 2/5*7 + 2/7*9 + ... + 2/53*55 )
A= 7/2*( 7-5/5*7 + 9-7/7*9 + ... + 55-53/53*55 )
A= 7/2*( 1/5-1/7 + 1/7-1/9 + ... + 1/53-1/55 )
A= 7/2*( 1/5-1/55 )
A= 7/2*2/11
A= 7/11
A= 7/11 > 1/2
Nên: A > 1/2
B= 1/3 + 1/15 + 1/35 + ... + 1/99
B= 1/1*3 + 1/3*5 + 1/5*7 + ... + 1/9*11
B= 2*( 2/1*3 + 2/3*5 + 1/5*7 + ... + 2/9*11 )
B= 2*( 3-1/1*3 + 5-3/3*5 + 7-5/5*7 + ... + 11-9/9*11 )
B= 2*( 1/1-1/3 + 1/3-1/5 + 1/5-1/7 + ... + 1/9-1/11 )
B= 2*( 1/1-1/11 )
B= 2*10/11
B= 20/11
B= 20/11 < 1/2
Nên: B < 1/2