K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(\frac{a}{b}=\frac{c}{d}\)

\(\left(2a+3b\right)\left(4c-5d\right)=\left(4a-5b\right)\left(2c+3d\right)\)

\(\Leftrightarrow8ac-10ad+12bc-15bd=8ac+12ad-10bc-15bd\)

\(\Leftrightarrow-10ad+12bc=12ad-10bc\)

\(\Leftrightarrow\left(-10ad+12bc\right)+\left(-12bc-12ad\right)=\left(12ad-10bc\right)+\left(-12bc-12ad\right)\)

\(\Leftrightarrow22bc=22ad\)

1 tháng 8 2015

vì a/b=c/d nên => a/c=b/d

đặt a/c=b/d =k thì => a=ck ; b= dk 

thay a=ck và b=dk vào 2a-3b/4a+5b có 

\(\frac{2a-3b}{4a+5b}=\frac{2ck-3dk}{4ck+5dk}=\frac{k\left(2c-3d\right)}{k\left(4c+5d\right)}=\frac{2c-3d}{4c+5d}\)

từ đay suy ra 2a-3b/4a+5b=2c-3d/4c+5d 

 

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng tỉ lệ thức ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\)\(\frac{4a}{4c}=\frac{3b}{3d}\Rightarrow\frac{4a+3b}{4c+3d}=\frac{4c-3d}{4c-3d}\)

b) Có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng tỉ lệ thức ta có "

\(\frac{2a}{3b}=\frac{2c}{3d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a-3b}{2c-3d}=\frac{2a3b}{2c+3d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

Các câu còn lại bạn làm tương tự

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

19 tháng 9 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)

a)\(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

\(\Leftrightarrow\left(a-b\right)\left(c+d\right)=\left(c-d\right)\left(a+b\right)\)

\(\Leftrightarrow ac-bc+ad-bd=ac-ad+bc-bd\)

\(\text{Thay }ad=bc\text{ vào}\Rightarrow ac-ad+ad-bd=ac-ad+ad-bd\)

\(\text{Đây là đẳng thức đúng }\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\text{ là đúng }\)

b)\(\text{Tương tự*}\)

a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{b}{a+b}=\frac{d}{c+d}\)

\(\Leftrightarrow\frac{-2b}{a+b}+1=\frac{-2d}{c+d}+1\Leftrightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

b) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{4a}{b}-5=\frac{4c}{d}-5\Leftrightarrow\frac{4a-5b}{b}=\frac{4c-5d}{d}\Leftrightarrow\frac{b}{4a-5b}=\frac{d}{4c-5d}\)

\(\Leftrightarrow\frac{11b}{4a-5b}+1=\frac{11d}{4c-5d}+1\Leftrightarrow\frac{4a+6b}{4a-5b}=\frac{4c+6d}{4c-5d}\Leftrightarrow\frac{2a+3b}{4a-5b}=\frac{2c+3d}{4c-5d}\)

\(\Leftrightarrow\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:

a)

\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)

\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)

\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)

b)

\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)

\((b+d).a=(b+d).bk=bk(b+d)\)

\(\Rightarrow (a+c)b=(b+d)a\)

c)

\(a(b-d)=bk(b-d)\)

\(b(a-c)=b(bk-dk)=bk(b-d)\)

\(\Rightarrow a(b-d)=b(a-c)\)

d)

\((b+d).c=(b+d).dk=dk(b+d)\)

\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)

\(\Rightarrow (b+d)c=(a+c)d\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

e)

\((b-d).c=(b-d).dk=dk(b-d)\)

\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)

\(\Rightarrow (b-d)c=(a-c)d\)

f)

\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)

\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)

\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)

g)

\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)

\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)

\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)

h)

\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)

\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)

\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)

i,k: Hoàn toàn tương tự.