K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2018

a) ta có: 290 = (25)18 = 3218

536 = (52)18 = 2518

=> ...

b) 227 = (23)9 = 89

318 = (32)9 = 99

=>...

4 tháng 9 2021

a. 290 > 536

b) đề hình như sai

26 tháng 7 2019

a) Ta có 290>289

<=>  \(\sqrt{290}\)   >       \(\sqrt{289}\)

<=>  \(\sqrt{290}\)   >        17

Vậy ..........

26 tháng 7 2019

\(a,290>289\)

\(\Rightarrow\sqrt{290}>\sqrt{289}\)

\(\Rightarrow\sqrt{290}>17\)

\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

24 tháng 10 2023

Ta có:

\(\left(-16\right)^{11}=\left(-2^4\right)^{11}=\left(-2\right)^{4.11}=\left(-2\right)^{44}\)

\(\left(-32\right)^9=\left(-2^5\right)^9=\left(-2\right)^{5.9}=\left(-2\right)^{45}\)

Vì \(44< 45\) nên \(\left(-2\right)^{44}>\left(-2\right)^{45}\)

Vậy \(\left(-16\right)^{11}>\left(-32\right)^9\)

 

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

$\sqrt{17}+\sqrt{10}> \sqrt{16}+\sqrt{9}=4+3=7$

25 tháng 7 2023

\(\sqrt[]{17}+\sqrt[]{10}\Rightarrow\left(\sqrt[]{17}+\sqrt[]{10}\right)^2=17+10+2\sqrt[]{70}=27+2\sqrt[]{70}< 27+2\sqrt[]{100}=47\)

mà \(7^2=49>47\)

\(\Rightarrow\sqrt[]{17}+\sqrt[]{10}< 7\)

`@` `\text {Ans}`

`\downarrow`

Ta có:

\(5^{333}=\left(5^3\right)^{111}=125^{111}\)

\(11^{222}=\left(11^2\right)^{111}=121^{111}\)

Vì `125 > 121 =>`\(125^{111}>121^{111}\)

`=>`\(5^{333}>11^{222}\)

Vậy, \(5^{333}>11^{222}\)

_____

`@` So sánh lũy thừa cùng cơ số:

Nếu `m > n =>`\(a^m>a^n\left(m,n\ne0,a>1\right)\)

`@` So sánh lũy thừa cùng số mũ:

Nếu `a > b =>`\(a^m>b^m\left(a,b>1,m\ne0\right)\)

`@` `\text {Kaizuu lv uuu}`

`@` `\text {Ans}`

`\downarrow`

`a)`

\(3^{200}\text{ và }2^{300}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

Vì `9 > 8 => 9^100 > 8^100`

`=> 3^200 > 2^300`

`b)`

\(27^{101}\text{ và }81^{35}\)

\(27^{101}=\left(3^3\right)^{101}=3^{303}\)

\(81^{35}=\left(3^4\right)^{35}=3^{140}\)

Vì `303 > 140 => 3^303 > 3^140`

`=> 27^101 > 81^35`

`c)`

\(2^{332}\text{ và }3^{223}\)

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì `9 > 8 => 9^111 > 8^111`

`=> 2^332 < 3^223.`

a: 3^200=9^100

2^300=8^100

mà 9>8

nên 3^200>2^300

b: 27^101=3^303

81^35=3^140

mà 303>140

nên 27^101>81^35

c: 2^332<2^333=8^111

3^223>3^222=9^111

mà 9>8

nên 3^223>8^111>2^332

9 tháng 9 2023

a) \(\dfrac{35}{101}=\dfrac{105}{303}< \dfrac{189}{303}\Rightarrow\dfrac{35}{101}< \dfrac{189}{303}\)

b) \(\dfrac{11}{13}< \dfrac{11+2}{13+2}=\dfrac{13}{15}< \dfrac{14}{15}\Rightarrow\dfrac{11}{-13}>\dfrac{-14}{15}\)

c) \(-\dfrac{32}{19}< 0< \dfrac{23}{32}\Rightarrow-\dfrac{32}{19}< \dfrac{23}{32}\)

d) \(1,561< 1,5661\Rightarrow-1,561>-1,5661\)

e) \(0,1=\dfrac{1}{10}=\dfrac{40}{400}< \dfrac{40+56}{400+56}=\dfrac{96}{456}< \dfrac{176}{456}\Rightarrow0,1< \dfrac{176}{456}\)

g) \(0,3=\dfrac{3}{10}=\dfrac{9}{30}< \dfrac{9+8}{30+8}=\dfrac{17}{38}< \dfrac{19}{38}\Rightarrow0,3< \dfrac{19}{38}\Rightarrow-0,3>\dfrac{-19}{38}\)

8 tháng 9 2023

-25/20 < 20/25

8 tháng 9 2023

15/21 > 21/49

1 tháng 4 2016

thiếu đề 

1 tháng 4 2016

a) trong tam giác tù ABC có A tù suy ra BC là cạnh lớn nhất trong tam giác ABC suy ra AB<BC

b)TH1: nếu M trùng với B thì BM<BC(1)

TH2: nếu M trùng với C thì BM=BC(2)

TH3: nếu M ko trung với B,C thì M nằm giữa B và C suy ra BM<BC(3)

từ (1)(2)(3) suy ra\(BC\ge BM\)

23 tháng 2 2022

\(2^{333}=\left(2^3\right)^{111}=8^{111}\\ 3^{222}=\left(3^2\right)^{111}=9^{111}\)

\(8^{111}< 9^{111}\Rightarrow2^{333}< 3^{222}\)

\(2^{333}=8^{111}< 9^{111}=3^{222}\)