Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{14}}{4^4\cdot64^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\frac{3}{2^4}=\frac{3}{16}\)
a)2/13 . 5 - 9/11 . 2/13 - 7/11 . 2/13
=2/13.(5-9/11-7/11)
=2/13.39/11
=6/11.
b)(-1/2)2 + 4,25
=1/4+4,25
=1/4+17/4
=9/2.
c)(-2/3)2 : ( --2 2/3) -- ( 5/8 -- 5/6 ) + 5.8--45/5.8
= -4/3 : -8/3 - -5/24 + 40 - 72
= -751/24.
Đề hình như bị sai ban ơi sửa lại
\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)
\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{95}\)
\(A=\dfrac{93}{190}\)
\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)
\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)
\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)
\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)
\(3B=2.\dfrac{93}{190}\)
\(3B=\dfrac{93}{95}\)
\(\Rightarrow B=\dfrac{31}{95}\)
Em xem lại đề câu B nhé\(B=\dfrac{3}{2}+\dfrac{3}{6}+\dfrac{3}{12}+\dfrac{3}{20}+...+\dfrac{3}{\left(n-1\right).n}\\ =3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{\left(n-1\right).n}\right)\\ =3.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)=3.\left(1-\dfrac{1}{n}\right)=3.\dfrac{n-1}{n}=3-\dfrac{3}{n}.\)
\(C=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{30.32}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{30}-\dfrac{1}{32}\\ =1-\dfrac{1}{32}=\dfrac{31}{32}.\)
\(D=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n+1}-\dfrac{1}{n+3}\right)\\ =\dfrac{1}{2}.\left(1-\dfrac{1}{n+3}\right)=\dfrac{1}{2}.\dfrac{n+2}{n+3}.\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{3^5.2^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
\(\frac{3}{16}\)