Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
phần b nhé
(X+0,7)3=-27
(X+0,7)3=(-3)3
X+0,7=-3
X=3-0,7=2,3
Vậy...
a) \(\dfrac{27}{2}\cdot7,5+\dfrac{27}{2}\cdot2,5-150\)
\(=\dfrac{27}{2}\cdot\left(7,5+2,5\right)-150\)
\(=\dfrac{27}{2}\cdot10-150\)
\(=135-150\)
\(=-15\)
b) \(3^3\cdot\dfrac{18}{5}-3^3\cdot2\dfrac{2}{5}-3^3\cdot\dfrac{6}{5}\)
\(=3^3\cdot\dfrac{18}{5}-3^3\cdot\dfrac{12}{5}-3^3\cdot\dfrac{6}{5}\)
\(=3^3\cdot\left(\dfrac{18}{5}-\dfrac{12}{5}-\dfrac{6}{5}\right)\)
\(=3^3\cdot\left(\dfrac{18}{5}-\dfrac{18}{5}\right)\)
\(=3^3\cdot0\)
\(=0\)
a)\(\dfrac{27^4.4^3}{9^5.8^2}\)
=\(\dfrac{3^{12}.2^6}{3^{10}.2^6}\)
=3\(^2\)=9
b)\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}\)
=\(\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}\)
=\(\dfrac{9}{2}\)
\(\dfrac{27^4.4^3}{9^5.8^2}=\dfrac{\left(3^3\right)^4.\left(2^2\right)^3}{\left(3^2\right)^5.\left(2^3\right)^2}=\dfrac{3^{12}.2^6}{3^{10}.2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
_________
\(\dfrac{3^{29}.4^{16}}{27^9.8^{11}}=\dfrac{3^{29}.\left(2^2\right)^{16}}{\left(3^3\right)^9.\left(2^3\right)^{11}}=\dfrac{3^{29}.2^{32}}{3^{27}.2^{33}}=\dfrac{1}{3^2.2}=\dfrac{1}{9.2}=\dfrac{1}{18}\)
\(2^{36}\)và \(3^{27}\)
\(2^{36}=2^{4.9}=\left(2^4\right)^9=16^9\)
\(3^{27}=3^{3.9}=\left(3^3\right)^9=27^9\)
Vì: \(16^9< 27^9\Rightarrow2^{36}< 3^{27}\)
\(2^{27}\)và \(3^{18}\)
\(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì: \(8^9< 9^9\Rightarrow2^{27}< 3^{18}\)
a) Ta có \(0,625^{200}=\left(\dfrac{5}{8}\right)^{200}\) và \(0,5^{1000}=\left(\dfrac{1}{2}\right)^{1000}=\left(\dfrac{1}{2}\right)^{5.200}\) \(=\left[\left(\dfrac{1}{2}\right)^5\right]^{200}\) \(=\left(\dfrac{1}{32}\right)^{200}\). Mà hiển nhiên \(\left(\dfrac{5}{8}\right)^{200}>\left(\dfrac{1}{32}\right)^{200}\) nên suy ra \(0,625^{200}>0,5^{1000}\)
b) Ta thấy \(\left(-32\right)^{27}< 0\) trong khi \(\left(-27\right)^{32}>0\) nên đương nhiên \(\left(-32\right)^{27}< \left(-27\right)^{32}\)
c) Ta thấy \(-\dfrac{3}{2}>-2\) nên \(\left(-\dfrac{3}{2}\right)^5>\left(-2\right)^5\)
\(27^2:25^3=\left(3^3\right)^2:\left(5^2\right)^3=3^6:5^6=\left(\frac{3}{5}\right)^6=\frac{729}{15625}\)
Theo bài ra , ta có : \(27^2:25^3=\frac{729}{15625}\)