Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2018^{2017}+2017^{2017}\right)^{2018}\) ; \(B=\left(2018^{2018}+2017^{2018}\right)^{2017}\)
Ta có:
\(B=\left(2018.2018^{2017}+2017.2017^{2017}\right)^{2017}\)
\(\Rightarrow B< \left(2018.2018^{2017}+2018.2017^{2017}\right)^{2017}\)
\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.2018^{2017}\)
\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2017}.\left(2018^{2017}+2017^{2017}\right)\)
\(\Rightarrow B< \left(2018^{2017}+2017^{2017}\right)^{2018}=A\)
\(\Rightarrow B< A\)
Ta có:
\(\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}=\dfrac{2018}{\sqrt{2018}}+\dfrac{1}{\sqrt{2018}}+\dfrac{2019}{\sqrt{2019}}-\dfrac{1}{\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}+\left(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\right)\)
Do \(\dfrac{1}{\sqrt{2018}}>\dfrac{1}{\sqrt{2019}}\) nên \(\dfrac{1}{\sqrt{2018}}-\dfrac{1}{\sqrt{2019}}\) dương \(\Rightarrow\dfrac{2019}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
20192018−−−−√+20182019−−−−√=20182018−−−−√+12018−−−−√+20192019−−−−√−12019−−−−√=2018−−−−√+2019−−−−√+(12018−−−−√−12019−−−−√)20192018+20182019=20182018+12018+20192019−12019=2018+2019+(12018−12019)
Do 12018−−−−√>12019−−−−√12018>12019 nên 12018−−−−√−12019−−−−√12018−12019 dương ⇒20192018−−−−√+20182019−−−−√>2018−−−−√+2019−−−−√
vì bài toán bảo tính nên ta chỉ cần tìm \(x;y\) thỏa mãn tất cả các điều kiện bài toán rồi thế vào là được
ta có : \(x=0;y=0\) thõa mãn tất cả các điều kiện bài toán
thế vào \(S\) ta có : \(S=x+y=0+0=0\) vậy \(S=0\)
\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
⇔ \(\left(x^2+2018-x^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\) ⇔ \(y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\)
⇔ \(x+y=\sqrt{x^2+2018}-\sqrt{y^2+2018}\left(1\right)\)
Làm tương tự : \(x+y=\sqrt{y^2+2018}-\sqrt{x^2+2018}\left(2\right)\)
Cộng vế với vế \(\left(1;2\right)\) , ta có : \(x+y=0\)
25+12+2018=2055
lễ giáng sinh hqua rùi nhé bn
..........................#rrtt
#froggen
Trả lời :
25 + 12 + 2018 = 2055
Merry Christmas