Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tổng là A
\(\frac{A}{6}=\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{6}{25.27.29}\)
\(\frac{A}{6}=\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\)
\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\)
\(\frac{A}{6}=\frac{1}{1.3}-\frac{1}{27.29}\Rightarrow A=\left(\frac{1}{3}-\frac{1}{27.29}\right):6\)
\(A=\frac{24}{1.3.5}+\frac{24}{3.5.7}+\frac{24}{5.7.9}+...+\frac{24}{25.27.29}\)
\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(A=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+\frac{9-5}{5.7.9}+...+\frac{29-25}{25.27.29}\right)\)
\(A=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(A=6\left(\frac{1}{1.3}-\frac{1}{27.29}\right)=\frac{520}{261}\)
chứng tỏ rằng : A=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+....+\frac{36}{25.27.29}< 3\)
Ta có:
\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)
\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)
\(\Rightarrow A=3-\frac{1}{87}\)
Vì \(3-\frac{1}{87}< 3.\)
\(\Rightarrow A< 3\left(đpcm\right).\)
Chúc bạn học tốt!
2.
\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)
Vậy \(A< 3\)
b,
\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)
Vậy \(B< 2\)
\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)
\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)
\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)
\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)
Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)
Vậy P < Q
\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)
\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(=5.\frac{260}{783}\)
\(=\frac{1300}{783}\)
Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)
\(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)
Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)
\(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)
\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)
1/1.3.5 + 1/3.5.7 + 1/5.7.9 +.....+ 1/99.101.103
= 1/4. [4/1.3.5 + 4/3.5.7 + 4/ 5.7.9 +....+ 4/99.101.103]
=1/4. [1/1.3 - 1/3.5 + 1/3.5 - 1/5.7 +....+ 1/99.101 - 1/101.103]
= 1/4. [1/1.3 - 1/101.103]
=1/4. 10406/31209
= 5230/62418
\(A=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+....+\frac{1}{99\cdot101\cdot103}\)
\(2A=\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5-7}+....+\frac{1}{99\cdot101}-\frac{1}{101\cdot103}\)
\(2A=\frac{1}{1\cdot3}-\frac{1}{101\cdot103}\)
Tính nốt
\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{2013.2015.2017}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...+\dfrac{4}{2013.2015.2017}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}-\dfrac{1}{2015.2017}\right)\)\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{2015.2017}\right)=\dfrac{1}{12}-\dfrac{1}{4.2015.2017}\)
\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)
ta có
\(A=6\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+..+\frac{4}{25.27.29}\right)=6\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+..+\frac{29-25}{25.27.29}\right)\)
\(=6\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+..+\frac{1}{25.27}-\frac{1}{27.29}\right)=6\left(\frac{1}{3}-\frac{1}{27.29}\right)\)
\(=2-\frac{2}{9.29}=\frac{520}{261}\)