K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100                                                                                                                                                  => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101                                                                                                                                                   => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101                                                                                                                 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101                                                                                                                                       Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B                                                                                                                                                   => 2B = 1 + 1/2 + 1/22 +..+ 1/299                                                                                                                                                                   => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100                                                                                            => 1/2A = 1 - 1/2100 - 100/2101                                                                                                                                                                 Có 1/2A < 1 => A < 2 =>ĐPCM                                                                                                                          b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101                                                                                                                                                => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101                              Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D                                                                                                                                               => 3D = 1 + 1/3 +..+ 1/399                                                                                                                                                                         => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100                                                                                                       => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101                                                                                                                                                 Có 4/3C < 1 => C<3/4 => ĐPCM              Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)          

27 tháng 1 2022

a, Xem lại đề.

b, <=> \(3^{n+1}=3^5\) <=> \(n+1=5\) <=> \(n=4\)

c, <=> \(7^{n-4}=7^2\) <=> \(n-4=2\) <=> \(n=6\)

d, <=> \(n=\pm3\)

e, <=> \(2^{n+4}=2^7\) <=> \(n+4=7\) <=> \(n=3\)

g, <=> \(2^n=\frac{1}{25}\) <=> .... (xem lai đề)

h, <=>  \(n=6\)

k, <=> \(n^2=81\) <=> \(n=\pm9\)

l, <=> \(n^2\left(n-1\right)=0\) <=> \(\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

14 tháng 12 2021

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

b)

Nhân 4 vào hai vế ta được:

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

  
5 tháng 8 2018

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 


=>S=[n.(n+1).(n+2)] : 3

29 tháng 8 2022

bb

8 tháng 6 2016

Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi

P/s: chắc bạn đánh mỏi tay lắm

24 tháng 2 2017
i dont no 
i dont no  

we too

 
20 tháng 2 2019

Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với \(n=1\Rightarrow1=1\)(đúng)

Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:

 \(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:

\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

\(\Rightarrow\left(2\right)\) đúng

\(\Rightarrow\left(1\right)\) đúng.

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)

a) 32 . 3n = 35

=> 3n = 35 : 32

=> 3n = 33

=> n = 3

các câu còn lại tương tự!!

chúc bạn học tốt!! ^^

56546475686594737262362353454363565475475485489456231532543643654745745624

     :Đ

20 tháng 12 2021

     :)

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi