K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

2(2y + 1)(8y - 3) + (3 - 4y)(8y - 7) = 6y + 73

32y2 - 12y + 16y - 6 + 24y - 21 - 32y2 + 28y = 6y + 73

56y - 27 = 6y + 73

56y - 6y = 73 + 27

50y = 100

y = 100 : 50

y = 2

12 tháng 8 2019

2(2y + 1)(8y - 3) + (3 - 4y)(8y - 7) = 6y + 73

32y2 - 12y + 16y - 6 + 24y - 21 - 32y2 + 28y = 6y + 73

56y - 27 = 6y + 73

56y - 6y = 73 + 27

50y = 100

y = 100 : 50

y = 2

tick và theo dõi giúp mình nha

12 tháng 10 2023

2:

a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)

\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)

b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-1\right)\)

c: \(=\left(y^2+10y+25\right)-9z^2\)

\(=\left(y+5\right)^2-\left(3z\right)^2\)

\(=\left(y+5+3z\right)\left(y+5-3z\right)\)

d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)

\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)

1:

a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)

b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)

\(=2y\left(5y-6\right)+4\left(5y-6\right)\)

\(=2\left(5y-6\right)\left(y+2\right)\)

c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)

\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)

\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)

d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)

\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)

\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)

\(=2y\left(x+y\right)\left(-x-7y\right)\)

12 tháng 10 2023

Bài 1

a) x(3 - 4x) + 5(3 - 4x)

= (3 - 4x)(x + 5)

b) 2y(5y - 6) - 4(6- 5y)

= 2y(5y - 6) + 4(5y - 6)

= (5y - 6)(2y + 4)

= 2(5y - 6)(y + 2)

c) 27(x - 2)³ - 3x(2 - x)²

= 27(x - 2)³ - 3x(x - 2)²

= 3(x - 2)²[9(x - 2) - x]

= 3(x - 2)²(9x - 18 - x)

= 3(x - 2)²(8x - 18)

= 6(x - 2)²(4x - 9)

d) 6y(x² - y²) - 8y(x + y)²

= 6y(x - y)(x + y) - 8y(x + y)²

= 2y(x + y)[3(x - y) - 4(x + y)]

= 2y(x + y)(3x - 3y - 4x - 4y)

= 2y(x + y)(-x - 7y)

= -2y(x + y)(x + 7y)

\(\left(3x-6y\right)\left(x^2+2xy+4y^2\right)-3\left(x^3-8y^3+12\right)\)

\(=3\left(x-2y\right)\left(x^2+2xy+4y^2\right)-3\left(x^3-8y^3+12\right)\)

\(=3\left(x^3-8y^3\right)-3\left(x^3-8y^3+12\right)\)

=-36

5 tháng 10 2021

\(A=5x^2-3x-x^3+x^2+x^3-62x-10+3x\\ A=6x^2-62x-10\\ B=x^3+x^2+x-x^3-x^2-x+5=5\\ C=3x^2y-15xy^2+15xy^2-10y^3+10y^2-3x^2y-4=-4\)

b: Ta có: \(B=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5\)

=5

3 tháng 8 2023

a) 9x4+16y6-24x2y3

=(3x2)2-2.3x2.4y3+(4y3)2

=(3x2-4y3)2

b) 16x2-24xy+9y2

=(4x)2-2.4x.3y+(3y)2

=(4x-3y)2

c) 36x2-(3x-2)2

=(36x-3x+2)(36x+3x-2)

=(33x+2)(39x-2)

d) 27x3+54x2y+36xy2+8y3

=(3x)3+3.(3x)2.2y+3.3x.(2y)2+(2y)3

=(3x+2y)3

e) y9-9x2y6+27x4y3-27x6

=(y3)3-3.(y3)2.3x2+3.y3.(3x2)2-(3x2)3

=(y3-3x2)3

f) 64x3+1

= (4x)3+13

=(4x+1)[(4x)2-4x.1+12]

=(4x+1)(16x2-4x+1)

e) 27x6-8x3  *sửa đề*

=(3x2)3-(2x)3

=(3x2-2x)[(3x)2+3x2.2x+(2x)2]

=(3x2-2x)(9x2+6x3+4x2)

~~~

6 tháng 8 2023

\(\dfrac{1}{2}x.\dfrac{1}{4}x^2.\dfrac{x^3}{8}.2y.4y-8y^3=x.x^2.x^3.y.y.\dfrac{2.4}{2.4.8}-8y^3\\ =x^6.y^2.\dfrac{1}{8}-8y^3\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{4}\cdot\dfrac{1}{8}\cdot x^3\cdot x^3\cdot8y^2-8y^3\)

\(=\dfrac{1}{8}x^6y^2-8y^3\)

15 tháng 10 2019

a) Kết quả bằng 3.           b) Kết quả bằng  1 2

26 tháng 8 2021

Trả lời:

a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)

\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)

\(=x^6-8y^3-x^6+x^3y^3+8y^3\)

\(=x^3y^3\)

b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)

\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)

\(=x^3-8-x^3+3x^2-3x+1+7\)

\(=3x^2-3x\)

c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)

\(=x\left(4-x^2\right)+x^3+27\)

\(=4x-x^3+x^3+27\)

\(=4x+27\)

5 tháng 11

\(^{ }\)