Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
It's so great!
\(\frac{a^2}{b}+b+2b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)
\(\Rightarrow\frac{a^2}{b}\ge2\sqrt{2\left(a^2+b^2\right)}-3b\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(LHS=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge2\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)-3\left(a+b+c\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)+\frac{3\sqrt{2}}{2}\left(\sqrt{a^2+b^2}+...\right)-3\left(a+b+c\right)\)
\(\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)=RHS\) (sử dụng Mincopxki)
Ta có đpcm.
P/s: Is that true?
\(A=1+2^2+2^3+...+2^{10}\)
\(\Leftrightarrow2A=2+2^3+2^4+...+2^{11}\)
\(\Leftrightarrow A=2^{11}-1\)
A=1+22+23+...+210A=1+22+23+...+210
⇔2A=2+23+24+...+211⇔2A=2+23+24+...+211
⇔A=211−1
\(a+b+c=0\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=a^2\) \(\Rightarrow b^2+c^2+2bc=a^2\)
\(\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca\) ; \(c^2-a^2-b^2=2ab\)
Mặt khác ta có:
\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
Đặt vế trái biểu thức cần chứng minh là P
\(\Rightarrow P=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\) (đpcm)
\(\Rightarrow C\\ \Leftrightarrow a^2=b^2+c^2-2b.c.cos\left(120\right)=b^2+c^2-2bc\dfrac{-1}{2}\\ =b^2+c^2+bc\)
Giải:
\(2+2x=0\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-\dfrac{2}{2}=-1\)
Vậy ...
2+2x0=2