K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2/10+2/40+2/88+.....+2/340+2/460

=2/2.5+2/5.8+2/8.11+....+2/17.20+2/20.23

=2/3.(3/2.5+3/5.8+3/8.11+....+3/17.20+3/20.23)

=2/3.(1/2-1/5+1/5-1/8+1/8-1/11+.....+1/17-1/20+1/20-1/23)

=2/3.(1/2-1/23)=2/3.21/46=7/23

cho mình xin 1 ks

3 tháng 5 2016

tách thành

=2/2x5+2/5x8+2/8x11+...+2/17x20+2/20x23

=2/3x(1+1/5-1/5+1/8-1/8+...+1/20-1/20+1/23)

=2/3x(1+1/23)

=2/3x24/23

=16/23

6 tháng 5 2016

\(A=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+...+\frac{2}{17.20}+\frac{2}{20.23}\)

\(\frac{3A}{2}=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}+\frac{3}{20.23}\)

\(\frac{3A}{2}=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}+\frac{23-20}{20.23}\)

\(\frac{3A}{2}=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}=\frac{1}{2}-\frac{1}{23}=\frac{21}{46}\)

\(A=\frac{21.2}{46.3}=\frac{7}{23}\)

6 tháng 5 2016

Mình trả lời trong tin nhắn rồi xem có đúng không nhé

28 tháng 6 2016

Số người  tăng sau  năm 2014 là:

80 000 000 x 1,3% = 1 040 000 ( người)

Số người tăng sau năm 2015 là:

( 80 000 000 + 1 040 000) x 1,3% = 1 053 520 ( người)

Số người dân tăng sau 2 năm là:

1 040 000 + 1 053 520 = 2 093 520 ( người)

Đáp số : 2 093 520 người 

24 tháng 7 2017

\(=\frac{27}{20}\)nhé!

^_^

20 tháng 5 2020

kb đi kb đi kb đi NHA

5 tháng 4 2015

\(=1+\frac{1}{10}+1+\frac{1}{40}+1+\frac{1}{88}+...+1+\frac{1}{460}\)

Nhưng mình chả hiểu nó viết theo qui luật gì ???

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

\(A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(A=\frac{3^2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

k nhá bn!

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{5}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(\Rightarrow A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

19 tháng 4 2017

Đặt A=1/10+1/40+1/88+1/154+1/238+1/340

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

3A=3/2.5+3/5.8+....+3/17.20

3A=1/2-1/5+1/5-1/8+...+1/17-1/20

3A=1/2-1/20

3A=9/20

2)

Giữ nguyên p/s 1/2^2

Ta có:1/3^2<1/2.3

         1/4^2<1/3.4

        ...............

          1/n^2<1/(n-1).n

=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n

=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n

=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n

=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4

3)

2B=2/3.5+2/5.7+....+2/47.49+2/49.51

2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51

2B=1/3-1/51

2B=16/51

B=16/51:2

B=8/51

19 tháng 4 2017

A=1+1/2+1/2^2+...+1/2^2010

2A=2+1+1/2+....+1/2^2009

2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)

A=2-1/2^2010