K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PN
15 tháng 3 2016
Lời giải của mình ở đây nha bạn!
http://olm.vn/hoi-dap/question/424173.html
\(S=\left\{\frac{4023}{2};\frac{4015}{2}\right\}\)
HL
0
5 tháng 12 2018
dat a =2009-x
b=x-2010
ta co : a^2+ab+b^2/a^2-ab+b^2 =19/49
<=>49a^2+49ab+49b^2=19a^2-19a+19b^2
<=>30a^2+68a+30b^2=0
<=>15a^2+34ab+15b^2=0
<=>15a^2+9ab+25ab+15b^2=0
<=>3a(5a+3b)+5b(5a+3b)=0
<=>(5a+3b)(3a+5b)=0
<=>5a+3b=0 hoac 3a+5b=0
vs 5a +3b=0 <=>5(2009-x)+3(x-2010)=0=>x=......
TP
1
PN
14 tháng 2 2016
Lời giải của mình ở đây nhé!
http://olm.vn/hoi-dap/question/424173.html
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)
\(ĐKXĐ:\) \(x\ne2009\) \(;\) \(x\ne2010\)
Đặt \(a=x-2010\) (với \(a\ne0\) ), ta được:
\(\frac{\left(a+1\right)^2-\left(a+1\right)a+a^2}{\left(a+1\right)^2+\left(a+1\right)a+a^2}=\frac{19}{49}\) \(\Leftrightarrow\) \(\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\) \(\Leftrightarrow\) \(49a^2+49a+49=57a^2+57a+19\)
\(\Leftrightarrow\) \(8a^2+8a-30=0\) \(\Leftrightarrow\) \(4a^2+4a-15=0\) \(\Leftrightarrow\) \(\left(2a+1\right)^2-16=0\)
\(\Leftrightarrow\) \(\left(2a-3\right)\left(2a+5\right)=0\) \(\Leftrightarrow\) \(^{a=\frac{3}{2}}_{a=-\frac{5}{2}}\) ( thỏa mãn điều kiện )
Do đó, \(x=\frac{4023}{2}\) hoặc \(x=\frac{4015}{2}\) (thỏa mãn \(ĐKXĐ\) )
Vậy, \(S=\left\{\frac{4023}{2};\frac{4015}{2}\right\}\)