K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

\(S=2000.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)=2000.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

  \(=2000.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)=2000.\left(1-\frac{1}{100}\right)=20.99=1980\)

12 tháng 12 2015

\(S=2000\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2000.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

       \(=2000.\left(1-\frac{1}{100}\right)=\frac{2000.99}{100}=20.99=1980\)

27 tháng 9 2016

Đặt \(A=\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)

\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1}\)

\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)

\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{100.\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)}\)

\(\Rightarrow A=\frac{20.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}}\)

\(\Rightarrow A=\frac{\frac{20}{11}+\frac{20}{12}+..+\frac{20}{100}}{\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}+\frac{1}{100}}\)

30 tháng 8 2023

          \(\dfrac{x-6}{1998}\) + \(\dfrac{x-4}{2000}\) = \(\dfrac{x-2000}{4}\) + \(\dfrac{x-1998}{6}\)

\(\dfrac{x-6}{1998}\) - 1 + \(\dfrac{x-4}{2000}\) - 1 = \(\dfrac{x-2000}{4}\) - 1 + \(\dfrac{x-1998}{6}\) - 1

\(\dfrac{x-6-1998}{1998}\) + \(\dfrac{x-4-2000}{2000}\)  = \(\dfrac{x-2000-4}{4}\) + \(\dfrac{x-1998-6}{6}\)

\(\dfrac{x-2004}{1998}\)  + \(\dfrac{x-2004}{2000}\) = \(\dfrac{x-2004}{4}\) + \(\dfrac{x-2004}{6}\)

(\(x-2004\)).[\(\dfrac{1}{1998}\) + \(\dfrac{1}{2000}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)] = 0

\(x\) - 2004 = 0

\(x\)             = 2004


 

 

3 tháng 12 2023

A =-1 -2 +3+4 -5 -6+7+8- 9- 10+11 +12-...- 1997- 1998 +1999+ 2000

= (-1-2+3+4) + (-5-6+7+8) + (-9-10+11+12) +....+ (-1997-1998+1999+2000)

= 4 + 4 + 4 +... +4 (Số bộ 4 số hạng: (2000 - 4):4 + 1= 500)

= 4 x 500 

= 2000

9 tháng 7 2019

(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)

1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2

2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)

https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)

3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=> 

4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
 

9 tháng 7 2019

1, Ta có: (x - 1)2000 \(\ge\)\(\forall\)x

|y - 2|2000 \(\ge\)\(\forall\)y

=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y

hay A \(\ge\)2019 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy Amin = 2019 tại  x = 1 và y = 2

2) Ta có: |x + 3| \(\ge\)\(\forall\)x

|x - y + 4| \(\ge\) 0 \(\forall\)x, y

=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10  \(\forall\)x,y

hay B \(\ge\)-10 \(\forall\)x,y

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

vậy Bmin = -10 tại x = -3  và y = 1