K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021
Đáp án là 32
12 tháng 11 2021

A: 2 x 8 =16

B: 2 x 4 x 4 = 32

27 tháng 1 2019

a ) 5 x 2 + 2 x = 4 − x ⇔ 5 x 2 + 2 x + x − 4 = 0 ⇔ 5 x 2 + 3 x − 4 = 0

Phương trình bậc hai trên có a = 5; b = 3; c = -4.

b)

3 5 x 2 + 2 x − 7 = 3 x + 1 2 ⇔ 3 5 x 2 + 2 x − 3 x − 7 − 1 2 = 0 ⇔ 3 5 x 2 − x − 15 2 = 0

c)

2 x 2 + x − 3 = x ⋅ 3 + 1 ⇔ 2 x 2 + x − x ⋅ 3 − 3 − 1 = 0 ⇔ 2 x 2 + x ⋅ ( 1 − 3 ) − ( 3 + 1 ) = 0

Phương trình bậc hai trên có a = 2; b = 1 - √3; c = - (√3 + 1).

d)

2 x 2 + m 2 = 2 ( m − 1 ) ⋅ x ⇔ 2 x 2 − 2 ( m − 1 ) ⋅ x + m 2 = 0

Phương trình bậc hai trên có a = 2; b = -2(m – 1);  c   =   m 2

Kiến thức áp dụng

Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0

trong đó x được gọi là ẩn; a, b, c là các hệ số và a ≠ 0.

13 tháng 10 2017

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

NV
22 tháng 3 2023

\(\Delta'=1-4\left(2m-4\right)>0\Rightarrow m< \dfrac{17}{8}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=2m-4\end{matrix}\right.\)

Từ \(x_1+x_2=-1\Rightarrow x_2=-1-x_1\)

Thế vào \(x_1^2=2x_2+5\)

\(\Rightarrow x_1^2=2\left(-1-x_1\right)+5\)

\(\Leftrightarrow x_1^2+2x_1-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=1\Rightarrow x_2=-2\\x_1=-3\Rightarrow x_2=2\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-4\)

\(\Rightarrow\left[{}\begin{matrix}2m-4=-2\\2m-4=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\) (thỏa mãn)

2 tháng 4 2023

\(x\left(3x-4\right)=2x^2+1\)

\(\Leftrightarrow3x^2-4x-2x^2-1=0\)

\(\Leftrightarrow x^2-4x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

Ta có :

\(A=x_1^2+x_2^2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4^2-1\)

\(=16-1\)

\(=15\)

10 tháng 12 2021

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

10 tháng 12 2021

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

a: \(\Leftrightarrow\left(2m-2\right)^2-4\left(m^2-2\right)>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+8>=0\)

=>-8m>=-12

hay m<=3/2

b: \(\Leftrightarrow\left(4m-4\right)^2-4\cdot\left(-2\right)\cdot\left(4m-6\right)>0\)

\(\Leftrightarrow16m^2-32m+16+32m-48>0\)

\(\Leftrightarrow16m^2>32\)

hay \(\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\)

22 tháng 1 2022

 \(a,\Delta'=\left[-\left(m-1\right)\right]^2-1\left(m^2-2\right)\\ =m^2-2m+1-m^2+2\\ =-2m+3\)

Để pt có nghiệm thì \(\Delta'\ge0\) hay

\(\Leftrightarrow-2m+3\ge0\\ \Leftrightarrow m\le\dfrac{3}{2}\)

\(b,\Delta'=\left[-2\left(m-1\right)\right]^2-\left(-2\right)\left(4m-6\right)\\ =4\left(m^2-2m+1\right)+2\left(4m-6\right)\\ =4m^2-8m+4+8m-12\\ =4m^2-8\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\) hay

\(4m^2-8>0\\ \Leftrightarrow\left[{}\begin{matrix}x< -\sqrt{2}\\x>\sqrt{2}\end{matrix}\right.\)