Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau gõ Latex cho dễ nhìn nhé em! :)
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2019-8\\ \Leftrightarrow2^x\cdot\left(1+2+2^2+...+2^{2015}\right)=2011\)
Ta thấy vế trái chia hết cho 2 nhưng vế phải chia 2 dư một nên không tồn tại giá trị của x thỏa mãn đề bài.
\(4^{n+2}+4^{n+3}+4^{n+4}+4^{n+5}=85.\left(2^{2019}\div2^{2015}\right)\)
\(\Leftrightarrow4^{n+2}\left(1+4^1+4^2+4^3\right)=85.2^{2019-2015}\)
\(\Leftrightarrow4^{n+2}.85=85.2^4\)
\(\Leftrightarrow4^{n+2}=2^4=4^2\)
\(\Leftrightarrow n+2=2\)
\(\Leftrightarrow n=0\)
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
\(8376:2^2-\left(2^3.5^2-2^3.15\right)+2019^0\)
= \(8376:4-\left(2^3.25-2^3.15\right)+1\)
=\(2094-\left(2^3.\left(25-15\right)\right)+1\)
=\(2094-\left(8.10\right)+1\)
=\(2094-80+1\)
= \(2014+1\)
=\(2015\)
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá